
Reference Manual
Volume 1: Building Blocks

Adaptive Server Enterprise

12.5

DOCUMENT ID: 36271-01-1250-01

LAST REVISED: June 2001

Copyright © 1989-2001 by Sybase, Inc. All rights reserved.

This publication pertains to Sybase database management software and to any subsequent release until otherwise indicated in new
editions or technical notes. Information in this document is subject to change without notice. The software described herein is furnished
under a license agreement, and it may be used or copied only in accordance with the terms of that agreement.

To order additional documents, U.S. and Canadian customers should call Customer Fulfillment at (800) 685-8225, fax (617) 229-9845.

Customers in other countries with a U.S. license agreement may contact Customer Fulfillment via the above fax number. All other
international customers should contact their Sybase subsidiary or local distributor. Upgrades are provided only at regularly scheduled
software release dates. No part of this publication may be reproduced, transmitted, or translated in any form or by any means, electronic,
mechanical, manual, optical, or otherwise, without the prior written permission of Sybase, Inc.

Sybase, the Sybase logo, ADA Workbench, Adaptable Windowing Environment, Adaptive Component Architecture, Adaptive Server,
Adaptive Server Anywhere, Adaptive Server Enterprise, Adaptive Server Enterprise Monitor, Adaptive Server Enterprise Replication,
Adaptive Server Everywhere, Adaptive Server IQ, Adaptive Warehouse, AnswerBase, Anywhere Studio, Application Manager,
AppModeler, APT Workbench, APT-Build, APT-Edit, APT-Execute, APT-FORMS, APT-Translator, APT-Library, Backup Server,
ClearConnect, Client-Library, Client Services, Data Pipeline, Data Workbench, DataArchitect, Database Analyzer, DataExpress,
DataServer, DataWindow, DB-Library, dbQueue, Developers Workbench, Direct Connect Anywhere, DirectConnect, Distribution
Director, E-Anywhere, E-Whatever, Embedded SQL, EMS, Enterprise Application Studio, Enterprise Client/Server, Enterprise Connect,
Enterprise Data Studio, Enterprise Manager, Enterprise SQL Server Manager, Enterprise Work Architecture, Enterprise Work Designer,
Enterprise Work Modeler, EWA, Financial Fusion, Financial Fusion Server, Gateway Manager, ImpactNow, InfoMaker, Information
Anywhere, Information Everywhere, InformationConnect, InternetBuilder, iScript, Jaguar CTS, jConnect for JDBC, KnowledgeBase,
MainframeConnect, Maintenance Express, MAP, MDI Access Server, MDI Database Gateway, media.splash, MetaWorks, MySupport,
Net-Gateway, Net-Library, ObjectConnect, ObjectCycle, OmniConnect, OmniSQL Access Module, OmniSQL Toolkit, Open Client,
Open ClientConnect, Open Client/Server, Open Client/Server Interfaces, Open Gateway, Open Server, Open ServerConnect, Open
Solutions, Optima++, PB-Gen, PC APT Execute, PC DB-Net, PC Net Library, Power++, power.stop, PowerAMC, PowerBuilder,
PowerBuilder Foundation Class Library, PowerDesigner, PowerDimensions, PowerDynamo, PowerJ, PowerScript, PowerSite,
PowerSocket, Powersoft, PowerStage, PowerStudio, PowerTips, Powersoft Portfolio, Powersoft Professional, PowerWare Desktop,
PowerWare Enterprise, ProcessAnalyst, Report Workbench, Report-Execute, Replication Agent, Replication Driver, Replication Server,
Replication Server Manager, Replication Toolkit, Resource Manager, RW-DisplayLib, RW-Library, S-Designor, SDF, Secure SQL
Server, Secure SQL Toolset, Security Guardian, SKILS, smart.partners, smart.parts, smart.script, SQL Advantage, SQL Anywhere, SQL
Anywhere Studio, SQL Code Checker, SQL Debug, SQL Edit, SQL Edit/TPU, SQL Everywhere, SQL Modeler, SQL Remote, SQL
Server, SQL Server Manager, SQL SMART, SQL Toolset, SQL Server/CFT, SQL Server/DBM, SQL Server SNMP SubAgent, SQL
Station, SQLJ, STEP, SupportNow, Sybase Central, Sybase Client/Server Interfaces, Sybase Financial Server, Sybase Gateways, Sybase
MPP, Sybase SQL Desktop, Sybase SQL Lifecycle, Sybase SQL Workgroup, Sybase User Workbench, SybaseWare, Syber Financial,
SyberAssist, SyBooks, System 10, System 11, System XI (logo), SystemTools, Tabular Data Stream, Transact-SQL, Translation Toolkit,
UNIBOM, Unilib, Uninull, Unisep, Unistring, URK Runtime Kit for UniCode, Viewer, Visual Components, VisualSpeller, VisualWriter,
VQL, WarehouseArchitect, Warehouse Control Center, Warehouse Studio, Warehouse WORKS, Watcom, Watcom SQL, Watcom SQL
Server, Web Deployment Kit, Web.PB, Web.SQL, WebSights, WebViewer, WorkGroup SQL Server, XA-Library, XA-Server and XP
Server are trademarks of Sybase, Inc. 3/01

Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.

All other company and product names used herein may be trademarks or registered trademarks of their respective companies.

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS 52.227-
7013 for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., 6475 Christie Avenue, Emeryville, CA 94608.

Contents

iii

About This Book ... xi

CHAPTER 1 System and User-Defined Datatypes .. 1
Datatype categories ... 2
Range and storage size ... 2
Declaring the datatype of a column, variable, or parameter............. 4

Declaring the datatype for a column in a table 4
Declaring the datatype for a local variable in a batch or procedure

5
Declaring the datatype for a parameter in a stored procedure.. 5
Determining the datatype of a literal.. 5

Datatype of mixed-mode expressions.. 6
Determining the datatype hierarchy .. 6
Determining precision and scale ... 7

Converting one datatype to another ... 8
Automatic conversion of fixed-length NULL columns................ 8
Handling overflow and truncation errors.................................... 9

Standards and compliance... 10
Exact numeric datatypes .. 11

Function... 11
Integer Types .. 11
Decimal datatypes... 12
Standards and compliance.. 14

Approximate numeric datatypes... 14
Function... 14
Understanding approximate numeric datatypes...................... 14
Range, precision, and storage size ... 15
Entering approximate numeric data .. 16
Values that may be entered by Open Client clients 16
Standards and compliance.. 16

Money datatypes.. 17
Function... 17
Accuracy.. 17
Range and storage size .. 17

Contents

iv

Entering monetary values.. 17
Standards and compliance.. 18

Timestamp datatype... 18
Function... 18
Creating a timestamp column.. 18

Date and time datatypes .. 19
Function... 19
Range and storage requirements.. 19
Entering datetime and smalldatetime data 19
Standards and compliance.. 23

Character datatypes... 24
Function... 24
Length and storage size .. 24
Entering character data ... 25
Treatment of blanks... 26
Manipulating character data .. 27
Standards and compliance.. 27

Binary datatypes .. 27
Function... 27
Valid binary and varbinary entries ... 28
Entries of more than the max column size 28
Treatment of trailing zeroes... 28
Platform dependence .. 29
Standards and compliance.. 30

bit datatype... 30
Function... 30
Entering data into bit columns ... 30
Storage size .. 30
Restrictions.. 31
Standards and compliance.. 31

sysname datatype .. 31
Function... 31
Using the sysname datatype ... 31
Standards and compliance.. 31

text and image datatypes ... 32
Function... 32
Defining a text or image column.. 32
How Adaptive Server stores text and image data 33
Initializing text and image columns.. 33
Saving space by allowing NULL.. 34
Getting information from sysindexes 34
Using readtext and writetext.. 35
Determining how much space a column uses......................... 35
Restrictions on text and image columns.................................. 36

Contents

v

Selecting text and image data ... 36
Converting text and image datatypes...................................... 37
Pattern matching in text data... 37
Duplicate rows... 38
Standards and compliance.. 38

User-defined datatypes .. 38
Function... 38
Creating frequently used datatypes in the model database 38
Creating a user-defined datatypes .. 39
Renaming a user-defined datatype ... 39
Dropping a user-defined datatype ... 39
Getting help on datatypes ... 39
Standards and compliance.. 40

CHAPTER 2 Transact-SQL Functions .. 41
Types of functions .. 41
Aggregate functions ... 45

Aggregates used with group by... 46
Aggregate functions and NULL values.................................... 46
Vector and scalar aggregates ... 46
Aggregate functions as row aggregates.................................. 49

Datatype conversion functions ... 51
Converting character data to a non-character type 53
Converting from one character type to another....................... 53
Converting numbers to a character type 54
Rounding during conversion to and from money types 54
Converting date/time information .. 55
Converting between numeric types ... 55
Arithmetic overflow and divide-by-zero errors 55
Conversions between binary and integer types 57
Converting between binary and numeric or decimal types...... 58
Converting image columns to binary types 58
Converting other types to bit ... 58
Converting NULL value ... 59

Date functions .. 59
Date parts.. 59

Mathematical functions .. 60
Security functions... 62
String functions .. 62

Limits on string functions... 63
System functions.. 64
Text and image functions ... 65

Contents

vi

CHAPTER 3 Functions: abs – difference .. 67
abs ... 67
acos.. 67
ascii .. 68
asin... 69
atan .. 70
atn2 .. 70
avg ... 71
ceiling ... 73
char .. 74
charindex.. 76
char_length .. 77
col_length... 78
col_name.. 79
compare ... 80
convert ... 82
cos.. 86
cot .. 87
count .. 88
curunreservedpgs .. 89
data_pgs .. 90
datalength .. 92
dateadd .. 93
datediff ... 94
datename ... 96
datepart .. 97
db_id .. 100
db_name .. 101
degrees .. 102
difference ... 103

CHAPTER 4 Functions: exp – mut_excl_roles ... 105
exp ... 105
floor .. 105
getdate ... 107
hextoint... 108
host_id.. 108
host_name ... 109
index_col .. 110
index_colorder.. 111
inttohex... 112
isnull ... 112
is_sec_service_on.. 113
lct_admin.. 114

Contents

vii

license_enabled ... 117
lockscheme .. 118
log .. 118
log10 .. 119
lower... 120
ltrim .. 120
max .. 121
min ... 122
mut_excl_roles ... 124

CHAPTER 5 Functions: object_id – rtrim... 125
object_id... 125
object_name... 126
patindex.. 126
pagesize... 129
pi .. 130
power ... 130
proc_role .. 131
ptn_data_pgs ... 132
radians ... 133
rand .. 134
replicate.. 135
reserved_pgs ... 136
reverse ... 137
right .. 138
role_contain.. 139
role_id .. 140
role_name .. 141
round .. 142
rowcnt... 143
rtrim .. 144

CHAPTER 6 Functions: show_role – valid_user ... 147
show_role... 147
show_sec_services .. 148
sign... 148
sin... 149
sortkey.. 150
soundex.. 154
space.. 154
sqrt ... 155
str ... 156
stuff .. 157

Contents

viii

substring... 159
sum .. 160
suser_id.. 162
suser_name ... 162
syb_sendmsg ... 163
tan .. 164
textptr ... 165
textvalid .. 166
to_unichar .. 167
tsequal.. 167
uhighsurr .. 169
ulowsurr.. 170
upper .. 171
uscalar.. 171
used_pgs.. 172
user .. 174
user_id ... 174
user_name ... 175
valid_name... 176
valid_user... 177

CHAPTER 7 Expressions, Identifiers, and Wildcard Characters.................. 179
Expressions.. 179

Arithmetic and character expressions 180
Relational and logical expressions .. 180
Operator precedence .. 180
Arithmetic operators .. 181
Bitwise operators... 181
String concatenation operator ... 183
Comparison operators... 183
Nonstandard operators.. 184
Using any, all and in .. 185
Negating and testing ... 185
Ranges .. 185
Using nulls in expressions... 185
Connecting expressions .. 187
Using parentheses in expressions .. 188
Comparing character expressions... 188
Using the empty string... 189
Including quotation marks in character expressions 189
Using the continuation character... 190

Identifiers.. 190
Tables beginning with # (temporary tables) 190
Case sensitivity and identifiers .. 191

Contents

ix

Uniqueness of object names ... 191
Using delimited identifiers ... 191
Identifying tables or columns by their qualified object name . 192
Determining whether an identifier is valid.............................. 194
Renaming database objects.. 194
Using multibyte character sets .. 195

Pattern matching with wildcard characters................................... 195
Using not like... 196
Case and accent insensitivity .. 197
Using wildcard characters ... 197
Using multibyte wildcard characters...................................... 199
Using wildcard characters as literal characters 199
Using wildcard characters with datetime data 201

CHAPTER 8 Reserved Words.. 203
Transact-SQL reserved words ... 203
SQL92 reserved words .. 205
Potential SQL92 reserved words ... 207

CHAPTER 9 SQLSTATE Codes and Messages ... 211
Warnings .. 211
Exceptions.. 212

Cardinality violations ... 212
Data exceptions... 212
Integrity constraint violations ... 213
Invalid cursor states .. 214
Syntax errors and access rule violations............................... 215
Transaction rollbacks .. 216
with check option violation... 216

Index ... 217

x

xi

About This Book

The Adaptive Server Reference Manual is a four-volume guide to
Sybase® Adaptive Server™ Enterprise and the Transact-SQL® language.

Volume 1, “Building Blocks,” describes the “parts” of Transact-SQL:
datatypes, built-in functions, expressions and identifiers, reserved words,
and SQLSTATE errors. Before you can use Transact-SQL sucessfully, you
need to understand what these building blocks do and how they affect the
results of Transact-SQL statements.

Volume 2, “Commands,” provides reference information about the
Transact-SQL commands, which you use to create statements.

Volume 3, “Procedures” provides reference information about system
procedures, catalog stored procedures, extended stored procedures, and
dbcc stored procedures. All procedures are created using Transact-SQL
statements.

Volume 4, “System Tables,” provides reference information about the
system tables, which store information about your server, databases, users,
and other details of your server. It provides information about the tables in
the dbccdb and dbccalt databases.

Audience The Adaptive Server Reference Manual is intended as a reference tool for
Transact-SQL users of all levels.

How to use this book • Chapter 1, “System and User-Defined Datatypes,” which describes
the system and user-defined datatypes that are supplied with Adaptive
Server and indicates how to use them to create user-defined
datatypes.

• Chapter 2, “Transact-SQL Functions,” lists the Adaptive Server
functions in a table that provides the name and a brief description.
Click on a function name in the table to go directly to the function.

• Chapter 3 through Chapter 6 provide manual pages for the individual
functions.

• Chapter 7, “Expressions, Identifiers, and Wildcard Characters,”
which provides information about using the Transact-SQL language.

xii

• Chapter 8, “Reserved Words,” which provides information about the
Transact-SQL and SQL92 keywords.

• Chapter 9, “SQLSTATE Codes and Messages,” which contains
information about Adaptive Server’s SQLSTATE status codes and the
associated messages.

Related documents The following documents comprise the Sybase Adaptive Server Enterprise
documentation:

• The release bulletin for your platform – contains last-minute information
that was too late to be included in the books.

A more recent version of the release bulletin may be available on the
World Wide Web. To check for critical product or document information
that was added after the release of the product CD, use the Sybase
Technical Library.

• The Installation Guide for your platform – describes installation, upgrade,
and configuration procedures for all Adaptive Server and related Sybase
products.

• Configuring Adaptive Server Enterprise for your platform – provides
instructions for performing specific configuration tasks for Adaptive
Server.

• What’s New in Adaptive Server Enterprise? – describes the new features
in Adaptive Server version 12.5, the system changes added to support
those features, and the changes that may affect your existing applications.

• Transact-SQL User’s Guide – documents Transact-SQL, Sybase’s
enhanced version of the relational database language. This manual serves
as a textbook for beginning users of the database management system.
This manual also contains descriptions of the pubs2 and pubs3 sample
databases.

• System Administration Guide – provides in-depth information about
administering servers and databases. This manual includes instructions
and guidelines for managing physical resources, security, user and system
databases, and specifying character conversion, international language,
and sort order settings.

• Reference Manual – contains detailed information about all Transact-SQL
commands, functions, procedures, and datatypes. This manual also
contains a list of the Transact-SQL reserved words and definitions of
system tables.

 About This Book

xiii

• Performance and Tuning Guide – explains how to tune Adaptive Server
for maximum performance. This manual includes information about
database design issues that affect performance, query optimization, how to
tune Adaptive Server for very large databases, disk and cache issues, and
the effects of locking and cursors on performance.

• The Utility Guide – documents the Adaptive Server utility programs, such
as isql and bcp, which are executed at the operating system level.

• The Quick Reference Guide – provides a comprehensive listing of the
names and syntax for commands, functions, system procedures, extended
system procedures, datatypes, and utilities in a pocket-sized book.
Available only in print version.

• The System Tables Diagram – illustrates system tables and their entity
relationships in a poster format. Available only in print version.

• Error Messages and Troubleshooting Guide – explains how to resolve
frequently occurring error messages and describes solutions to system
problems frequently encountered by users.

• Component Integration Services User’s Guide – explains how to use the
Adaptive Server Component Integration Services feature to connect
remote Sybase and non-Sybase databases.

• Java in Adaptive Server Enterprise – describes how to install and use Java
classes as datatypes, functions, and stored procedures in the Adaptive
Server database.

• Using Sybase Failover in a High Availability System – provides
instructions for using Sybase’s Failover to configure an Adaptive Server
as a companion server in a high availability system.

• Using Adaptive Server Distributed Transaction Management Features –
explains how to configure, use, and troubleshoot Adaptive Server DTM
features in distributed transaction processing environments.

• EJB Server User’s Guide – explains how to use EJB Server to deploy and
execute Enterprise JavaBeans in Adaptive Server.

• XA Interface Integration Guide for CICS, Encina, and TUXEDO –
provides instructions for using Sybase’s DTM XA interface with X/Open
XA transaction managers.

• Glossary – defines technical terms used in the Adaptive Server
documentation.

xiv

• Sybase jConnect for JDBC Programmer’s Reference – describes the
jConnect for JDBC product and explains how to use it to access data stored
in relational database management systems.

• Full-Text Search Specialty Data Store User’s Guide – describes how to use
the Full-Text Search feature with Verity to search Adaptive Server
Enterprise data.

• Historical Server User’s Guide –describes how to use Historical Server to
obtain performance information for SQL Server and Adaptive Server.

• Monitor Server User’s Guide – describes how to use Monitor Server to
obtain performance statistics from SQL Server and Adaptive Server.

• Monitor Client Library Programmer’s Guide – describes how to write
Monitor Client Library applications that access Adaptive Server
performance data.

Other sources of
information

Use the Sybase Technical Library CD and the Technical Library Product
Manuals Web site to learn more about your product:

• Technical Library CD contains product manuals and is included with your
software. The DynaText browser (downloadable from Product Manuals at
http://www.sybase.com/detail/1,3693,1010661,00.html) allows you to access
technical information about your product in an easy-to-use format.

Refer to the Technical Library Installation Guide in your documentation
package for instructions on installing and starting the Technical Library.

• Technical Library Product Manuals Web site is an HTML version of the
Technical Library CD that you can access using a standard Web browser.
In addition to product manuals, you will find links to the Technical
Documents Web site (formerly known as Tech Info Library), the Solved
Cases page, and Sybase/Powersoft newsgroups.

To access the Technical Library Product Manuals Web site, go to Product
Manuals at http://www.sybase.com/support/manuals/.

Conventions The following sections describe conventions used in this manual.

SQL is a free-form language. There are no rules about the number of words you
can put on a line or where you must break a line. However, for readability, all
examples and most syntax statements in this manual are formatted so that each
clause of a statement begins on a new line. Clauses that have more than one part
extend to additional lines, which are indented. Complex commands are
formatted using modified Backus Naur Form (BNF) notation.

Table 1 shows the conventions for syntax statements that appear in this manual:

 About This Book

xv

Table 1: Font and syntax conventions for this manual

• Syntax statements (displaying the syntax and all options for a command)
appear as follows:

sp_dropdevice [device_name]

or, for a command with more options:

select column_name
 from table_name
 where search_conditions

Element Example

Command names, command options, utility
names, utility options, and other keywords are
bold.

select
sp_configure

Database names, datatypes, file names and
path names are in italics.

master database

Variables, or words that stand for values that
you fill in, are in italics.

select column_name
from table_name
where search_conditions

Type parentheses as part of the command. compute row_aggregate (column_name)

Double colon, equals sign indicates that the
syntax is written in BNF notation. Do not type
this symbol. Indicates “is defined as”.

::=

Curly braces mean that you must choose at
least one of the enclosed options. Do not type
the braces.

{cash, check, credit}

Brackets mean that to choose one or more of
the enclosed options is optional. Do not type
the brackets.

[cash | check | credit]

The comma means you may choose as many
of the options shown as you want. Separate
your choices with commas as part of the
command.

cash, check, credit

The pipe or vertical bar(|) means you may
select only one of the options shown.

cash | check | credit

An ellipsis (...) means that you can repeat the
last unit as many times as you like.

buy thing = price [cash | check | credit]
 [, thing = price [cash | check | credit]]...

You must buy at least one thing and give its price. You may choose
a method of payment: one of the items enclosed in square brackets.
You may also choose to buy additional things: as many of them as
you like. For each thing you buy, give its name, its price, and
(optionally) a method of payment.

xvi

In syntax statements, keywords (commands) are in normal font and
identifiers are in lowercase. Italic font shows user-supplied words.

• Examples showing the use of Transact-SQL commands are printed like
this:

select * from publishers

• Examples of output from the computer appear as follows:

pub_id pub_name city state
------- --------------------- ----------- -----
0736 New Age Books Boston MA
0877 Binnet & Hardley Washington DC
1389 Algodata Infosystems Berkeley CA

(3 rows affected)

In this manual, most of the examples are in lowercase. However, you can
disregard case when typing Transact-SQL keywords. For example, SELECT,
Select, and select are the same.

Adaptive Server’s sensitivity to the case of database objects, such as table
names, depends on the sort order installed on Adaptive Server. You can change
case sensitivity for single-byte character sets by reconfiguring the Adaptive
Server sort order. For more information, see the System Administration Guide.

If you need help Each Sybase installation that has purchased a support contract has one or more
designated people who are authorized to contact Sybase Technical Support. If
you cannot resolve a problem using the manuals or online help, please have the
designated person contact Sybase Technical Support or the Sybase subsidiary
in your area.

1

C H A P T E R 1 System and User-Defined
Datatypes

This chapter describes the Transact-SQL datatypes. Datatypes specify the
type, size, and storage format of columns, stored procedure parameters,
and local variables. Topics covered are:

• Datatype categories

• Range and storage size

• Declaring the datatype of a column, variable, or parameter

• Datatype of mixed-mode expressions

• Converting one datatype to another

• Standards and compliance

• Exact numeric datatypes

• Approximate numeric datatypes

• Money datatypes

• Timestamp datatype

• Date and time datatypes

• Character datatypes

• Binary datatypes

• bit datatype

• sysname datatype

• text and image datatypes

• User-defined datatypes

Datatype categories

2

Datatype categories
Adaptive Server provides several system datatypes and the user-defined
datatypes timestamp and sysname. Table 1-1 lists the categories of
Adaptive Server datatypes. Each category is described in a section of this
chapter.

Table 1-1: Datatype categories

Range and storage size
Table 1-2 lists the system-supplied datatypes and their synonyms and
provides information about the range of valid values and storage size for
each. For simplicity, the datatypes are printed in lowercase characters,
although Adaptive Server allows you to use either uppercase or lowercase
characters for system datatypes. User-defined datatypes, such as
timestamp, are case sensitive. Most Adaptive Server-supplied datatypes
are not reserved words and can be used to name other objects.

Table 1-2: Range and storage size for system datatypes

Category Used for

Exact numeric datatypes Numeric values (both integers and numbers with a decimal portion)
that must be represented exactly

Approximate numeric datatypes Numeric data that can tolerate rounding during arithmetic operations

Money datatypes Monetary data

Timestamp datatype Tables that are browsed in Client-Library™ applications

Date and time datatypes Date and time information

Character datatypes Strings consisting of letters, numbers, and symbols

Binary datatypes Raw binary data, such as pictures, in a hexadecimal-like notation

bit datatype True/false and yes/no type data

sysname datatype System tables

text and image datatypes Printable characters or hexadecimal-like data that requires more than
the maximum column size provided by you server’s logical page size.

User-defined datatypes Defining objects that inherit the rules, default, null type, IDENTITY
property, and base datatype

Datatypes Synonyms Range Bytes of storage

Exact numeric datatypes

CHAPTER 1 System and User-Defined Datatypes

3

tinyint

smallint

int integer

0 to 255

-215 (-32,768) to 215 -1 (32,767)

-231 (-2,147,483,648) to
231 -1 (2,147,483,647)

1

2

4

numeric (p, s)

decimal (p, s) dec

-1038 to 1038 -1

-1038 to 1038 -1

2 to 17

2 to 17

Approximate numeric datatypes

float (precision)

double precision

real

Machine dependent

Machine dependent

Machine dependent

4 or 8

8

4

Money datatypes

smallmoney

money

-214,748.3648 to 214,748.3647

-922,337,203,685,477.5808 to
 922,337,203,685,477.5807

4

8

Date/time datatypes

smalldatetime

datetime

January 1, 1900 to June 6, 2079

January 1, 1753 to
December 31, 9999

4

8

Character datatypes

char(n) character Determined by the maximum colum size
for your server’s logical page size

n

varchar(n) char[acter] varying Determined by the maximum colum size
for your server’s logical page size

actual entry length

unichar Unicode character Determined by the maximum colum size
for your server’s logical page size

n*@@unicharsize
(@@unicharsize
equals 2)

univarchar unichar(acter) varying Determined by the maximum colum size
for your server’s logical page size

actual number of
characters
*@@unicharsize

nchar(n) national char[acter] Determined by the maximum colum size
for your server’s logical page size

n * @@ncharsize

nvarchar(n) nchar varying, national
char[acter] varying

Determined by the maximum colum size
for your server’s logical page size

n

Binary datatypes

binary(n)

varbinary(n)

Determined by the maximum colum size
for your server’s logical page size

Determined by the maximum colum size
for your server’s logical page size

n

actual entry length

Bit datatype

Datatypes Synonyms Range Bytes of storage

Declaring the datatype of a column, variable, or parameter

4

Declaring the datatype of a column, variable, or
parameter

You must declare the datatype for a column, local variable, or parameter.
The datatype can be any of the system-supplied datatypes or any user-
defined datatype in the database.

Declaring the datatype for a column in a table
Use the following syntax to declare the datatype of a new column in a
create table or an alter table statement:

create table [[database.]owner.]table_name
(column_name datatype [identity | not null | null]

[, column_name datatype [identity | not null |
null]]...)

alter table [[database.]owner.]table_name
add column_name datatype [identity | null

[, column_name datatype [identity | null]...

For example:

create table sales_daily
 (stor_id char(4)not null,
 ord_num numeric(10,0)identity,
 ord_amt money null)

bit 0 or 1 1 (1 byte holds up to 8
bit columns)

Text and image datatypes

text 231 -1 (2,147,483,647) bytes or fewer 0 until initialized, then
a multiple of the
logical page size

image 231 -1 (2,147,483,647) bytes or fewer 0 until initialized, then
a multiple of the
logical page size

Datatypes Synonyms Range Bytes of storage

CHAPTER 1 System and User-Defined Datatypes

5

Declaring the datatype for a local variable in a batch or procedure
Use the following syntax to declare the datatype for a local variable in a
batch or stored procedure:

declare @variable_name datatype
[, @variable_name datatype]...

For example:

declare @hope money

Declaring the datatype for a parameter in a stored procedure
Use the following syntax to declare the datatype for a parameter in a stored
procedure:

create procedure [owner.]procedure_name [;number]
[[(]@parameter_name datatype [= default] [output]

[,@parameter_name datatype [= default]
[output]]...[)]]

[with recompile]
as SQL_statements

For example:

create procedure auname_sp @auname varchar(40)
as
 select au_lname, title, au_ord
 from authors, titles, titleauthor
 where @auname = au_lname
 and authors.au_id = titleauthor.au_id
 and titles.title_id = titleauthor.title_id

Determining the datatype of a literal
You cannot declare the datatype of a literal. Adaptive Server treats all
character literals as varchar. Numeric literals entered with E notation are
treated as float; all others are treated as exact numerics:

• Literals between 231 - 1 and -231 with no decimal point are treated as
integer.

Datatype of mixed-mode expressions

6

• Literals that include a decimal point, or that fall outside the range for
integers, are treated as numeric.

Note To preserve backward compatibility, use E notation for numeric
literals that should be treated as float.

Datatype of mixed-mode expressions
When you perform concatenation or mixed-mode arithmetic on values
with different datatypes, Adaptive Server must determine the datatype,
length, and precision of the result.

Determining the datatype hierarchy
Each system datatype has a datatype hierarchy, which is stored in the
systypes system table. User-defined datatypes inherit the hierarchy of the
system datatype on which they are based.

The following query ranks the datatypes in a database by hierarchy. In
addition to the information shown below, your query results will include
information about any user-defined datatypes in the database:

select name,hierarchy
from systypes
order by hierarchy
name hierarchy
----------------------------- ---------
floatn 1
float 2
datetimn 3
datetime 4
real 5
numericn 6
numeric 7
decimaln 8
decimal 9
moneyn 10
money 11
smallmoney 12
smalldatetime 13

CHAPTER 1 System and User-Defined Datatypes

7

intn 14
int 15
smallint 16
tinyint 17
bit 18
univarchar 19
unichar 20
reserved 21
varchar 22
sysname 22
nvarchar 22
char 23
nchar 23
varbinary 24
timestamp 24
binary 25
text 26
image 27
(28 rows affected)

The datatype hierarchy determines the results of computations using
values of different datatypes. The result value is assigned the datatype that
is closest to the top of the list.

In the following example, qty from the sales table is multiplied by royalty
from the roysched table. qty is a smallint, which has a hierarchy of 16;
royalty is an int, which has a hierarchy of 15. Therefore, the datatype of the
result is an int.

smallint(qty) * int(royalty) = int

Determining precision and scale
For numeric and decimal datatypes, each combination of precision and
scale is a distinct Adaptive Server datatype. If you perform arithmetic on
two numeric or decimal values:

• n1 with precision p1 and scale s1, and

• n2 with precision p2 and scale n2

Adaptive Server determines the precision and scale of the results as shown
in Table 1-3:

Converting one datatype to another

8

Table 1-3: Precision and scale after arithmetic operations

Converting one datatype to another
Many conversions from one datatype to another are handled automatically
by Adaptive Server. These are called implicit conversions. Other
conversions must be performed explicitly with the convert, inttohex, and
hextoint functions. See “Datatype conversion functions” for details about
datatype conversions supported by Adaptive Server.

Automatic conversion of fixed-length NULL columns
Only columns with variable-length datatypes can store null values. When
you create a NULL column with a fixed-length datatype, Adaptive Server
automatically converts it to the corresponding variable-length datatype.
Adaptive Server does not inform the user of the datatype change.

Table 1-4 lists the fixed- and variable-length datatypes to which they are
converted. Certain variable-length datatypes, such as moneyn, are reserved
datatypes; you cannot use them to create columns, variables, or
parameters:

Operation Precision Scale

n1 + n2 max(s1, s2) + max(p1 -s1, p2 - s2) + 1 max(s1, s2)

n1 - n2 max(s1, s2) + max(p1 -s1, p2 - s2) + 1 max(s1, s2)

n1 * n2 s1 + s2 + (p1 - s1) + (p2 - s2) + 1 s1 + s2

n1 / n2 max(s1 + p2 + 1, 6) + p1 - s1 + p2 max(s1 + p2 -s2 + 1, 6)

CHAPTER 1 System and User-Defined Datatypes

9

Table 1-4: Automatic conversion of fixed-length datatypes

Handling overflow and truncation errors
The arithabort option determines how Adaptive Server behaves when an
arithmetic error occurs. The two arithabort options, arithabort arith_overflow
and arithabort numeric_truncation, handle different types of arithmetic
errors. You can set each option independently, or set both options with a
single set arithabort on or set arithabort off statement.

• arithabort arith_overflow specifies behavior following a divide-by-zero
error or a loss of precision during either an explicit or an implicit
datatype conversion. This type of error is considered serious. The
default setting, arithabort arith_overflow on, rolls back the entire
transaction in which the error occurs. If the error occurs in a batch that
does not contain a transaction, arithabort arith_overflow on does not roll
back earlier commands in the batch, but Adaptive Server does not
execute any statements that follow the error-generating statement in
the batch.

If you set arithabort arith_overflow off, Adaptive Server aborts the
statement that causes the error, but continues to process other
statements in the transaction or batch.

Original Fixed-Length Datatype Converted To

char varchar

unichar univarchar

nchar nvarchar

binary varbinary

datetime datetimn

float floatn

int, smallint, and tinyint intn

decimal decimaln

numeric numericn

money and smallmoney moneyn

Standards and compliance

10

• arithabort numeric_truncation specifies behavior following a loss of
scale by an exact numeric datatype during an implicit datatype
conversion. (When an explicit conversion results in a loss of scale, the
results are truncated without warning.) The default setting, arithabort
numeric_truncation on, aborts the statement that causes the error but
continues to process other statements in the transaction or batch. If
you set arithabort numeric_truncation off, Adaptive Server truncates the
query results and continues processing.

The arithignore option determines whether Adaptive Server prints a
warning message after an overflow error. By default, the arithignore option
is turned off. This causes Adaptive Server to display a warning message
after any query that results in numeric overflow. To ignore overflow errors,
use set arithignore on.

Note The arithabort and arithignore options were redefined for release
10.0. If you use these options in your applications, examine them to be
sure they still produce the desired effects.

Standards and compliance

Standard Complience level

SQL92 Transact-SQL provides the smallint, int, numeric, decimal,
float, double precision, real, char, and varchar SQL92
datatypes. The tinyint, binary, varbinary, image, bit, datetime,
smalldatetime, money, smallmoney, nchar, nvarchar,unichar,
univarchar, sysname, text, timestamp, and user-defined
datatypes are Transact-SQL extensions.

CHAPTER 1 System and User-Defined Datatypes

11

Exact numeric datatypes

Function
Use the exact numeric datatypes when it is important to represent a value
exactly. Adaptive Server provides exact numeric types for both integers
(whole numbers) and numbers with a decimal portion.

Integer Types
Adaptive Server provides three exact numeric datatypes to store integers:
int (or integer), smallint, and tinyint. Choose the integer type based on the
expected size of the numbers to be stored. Internal storage size varies by
type, as shown in Table 1-5:

Table 1-5: Integer datatypes

Entering integer data

Enter integer data as a string of digits without commas. Integer data can
include a decimal point as long as all digits to the right of the decimal point
are zeros. The smallint and integer datatypes can be preceded by an
optional plus or minus sign. The tinyint datatype can be preceded by an
optional plus sign.

Table 1-6 shows some valid entries for a column with a datatype of integer
and indicates how isql displays these values:

Datatype Stores
Bytes of
Storage

int[eger] Whole numbers between-231 and 231 - 1
(-2,147,483,648 and 2,147,483,647), inclusive.

4

smallint Whole numbers between -215 and 215 -1
(-32,768 and 32,767), inclusive.

2

tinyint Whole numbers between 0 and 255, inclusive.
(Negative numbers are not permitted.)

1

Exact numeric datatypes

12

Table 1-6: Valid integer values

Table 1-7 lists some invalid entries for an integer column:

Table 1-7: Invalid integer values

Decimal datatypes
Adaptive Server provides two other exact numeric datatypes, numeric and
dec[imal], for numbers that include decimal points. Data stored in numeric
and decimal columns is packed to conserve disk space, and preserves its
accuracy to the least significant digit after arithmetic operations. The
numeric and decimal datatypes are identical in all respects but one: only
numeric datatypes with a scale of 0 can be used for the IDENTITY column.

Specifying precision and scale

The numeric and decimal datatypes accept two optional parameters,
precision and scale, enclosed in parentheses and separated by a comma:

datatype [(precision [, scale])]

Adaptive Server treats each combination of precision and scale as a
distinct datatype. For example, numeric(10,0) and numeric(5,0) are two
separate datatypes. The precision and scale determine the range of values
that can be stored in a decimal or numeric column:

• The precision specifies the maximum number of decimal digits that
can be stored in the column. It includes all digits, both to the right and
to the left of the decimal point. You can specify precisions ranging
from 1 digit to 38 digits or use the default precision of 18 digits.

Value Entered Value Displayed

2 2

+2 2

-2 -2

2. 2

2.000 2

Value Entered Type of Error

2,000 Commas not allowed.

2- Minus sign should precede digits.

3.45 Digits to the right of the decimal point are nonzero
digits.

CHAPTER 1 System and User-Defined Datatypes

13

• The scale specifies the maximum number of digits that can be stored
to the right of the decimal point. The scale must be less than or equal
to the precision. You can specify a scale ranging from 0 digits to 38
digits or use the default scale of 0 digits.

Storage size

The storage size for a numeric or decimal column depends on its precision.
The minimum storage requirement is 2 bytes for a 1- or 2-digit column.
Storage size increases by approximately 1 byte for each additional 2 digits
of precision, up to a maximum of 17 bytes.

Use the following formula to calculate the exact storage size for a numeric
or decimal column:

ceiling (precision / log 256) + 1

For example, the storage size for a numeric(18,4) column is 9 bytes.

Entering decimal data

Enter decimal and numeric data as a string of digits preceded by an optional
plus or minus sign and including an optional decimal point. If the value
exceeds either the precision or scale specified for the column, Adaptive
Server returns an error message. Exact numeric types with a scale of 0 are
displayed without a decimal point.

Table 1-8 shows some valid entries for a column with a datatype of
numeric(5,3) and indicates how these values are displayed by isql:

Table 1-8: Valid decimal values

Table 1-9 shows some invalid entries for a column with a datatype of
numeric(5,3):

Value Entered Value Displayed

12.345 12.345

+12.345 12.345

-12.345 -12.345

12.345000 12.345

12.1 12.100

12 12.000

Approximate numeric datatypes

14

Table 1-9: Invalid decimal values

Standards and compliance

Approximate numeric datatypes

Function
Use the approximate numeric types, float, double precision, and real, for
numeric data that can tolerate rounding during arithmetic operations. The
approximate numeric types are especially suited to data that covers a wide
range of values. They support all aggregate functions and all arithmetic
operations except modulo.

Understanding approximate numeric datatypes
Approximate numeric datatypes, used to store floating-point numbers, are
inherently slightly inaccurate in their representation of real numbers—
hence the name “approximate numeric”. To use these datatypes, you must
understand their limitations.

Value Entered Type of Error

1,200 Commas not allowed.

12- Minus sign should precede digits.

12.345678 Too many nonzero digits to the right of the decimal
point.

Standard Complience level

SQL92 Transact-SQL provides the smallint, int, numeric, and decimal
SQL92 exact numeric datatypes. The tinyint type is a Transact-
SQL extension.

CHAPTER 1 System and User-Defined Datatypes

15

When a floating-point number is printed or displayed, the printed
representation is not quite the same as the stored number, and the stored
number is not quite the same as the number that the user entered. Most of
the time, the stored representation is close enough, and software makes the
printed output look just like the original input, but you must understand the
inaccuracy if you plan to use floating-point numbers for calculations,
particularly if you are doing repeated calculations using approximate
numeric datatypes—the results can be surprisingly and unexpectedly
inaccurate.

The inaccuracy occurs because floating-point numbers are stored in the
computer as binary fractions (that is, as a representative number divided
by a power of 2), but the numbers we use are decimal (powers of 10). This
means that only a very small set of numbers can be stored accurately: 0.75
(3/4) can be stored accurately because it is a binary fraction (4 is a power
of 2); 0.2 (2/10) can not (10 is not a power of 2).

Some numbers contain too many digits to store accurately. double precision
is stored as 8 binary bytes and can represent about 17 digits with
reasonable accuracy. real is stored as 4 binary bytes and can represent only
about 6 digits with reasonable accuracy.

If you begin with numbers that are almost correct, and do computations
with them using other numbers that are almost correct, you can easily end
up with a result that is not even close to being correct. If these
considerations are important to your application, use an exact numeric
datatype.

Range, precision, and storage size
The real and double precision types are built on types supplied by the
operating system. The float type accepts an optional binary precision in
parentheses. float columns with a precision of 1–15 are stored as real; those
with higher precision are stored as double precision.

The range and storage precision for all three types is machine dependent.

Table 1-10 shows the range and storage size for each approximate numeric
type. Note that isql displays only 6 significant digits after the decimal point
and rounds the remainder:

Approximate numeric datatypes

16

Table 1-10: Approximate numeric datatypes

Entering approximate numeric data
Enter approximate numeric data as a mantissa followed by an optional
exponent:

• The mantissa is a signed or unsigned number, with or without a
decimal point. The column’s binary precision determines the
maximum number of binary digits allowed in the mantissa.

• The exponent, which begins with the character “e” or “E,” must be a
whole number.

The value represented by the entry is the following product:

mantissa * 10EXPONENT

For example, 2.4E3 represents the value 2.4 times 103, or 2400.

Values that may be entered by Open Client clients
“NaN” and “Inf” are special values that the floating point number standard
uses to represent values that are “not a number” and “infinity,”
respectively. Adaptive Server does not usually permit these values, but
Open Client clients can sometimes stuff these values into tables.

Standards and compliance

Datatype Bytes of Storage

float[(default precision)] 4 for default precision < 16
8 for default precision >= 16

double precision 8

real 4

Standard Complience level

SQL92 The float, double precision, and real datatypes are entry level
compliant.

CHAPTER 1 System and User-Defined Datatypes

17

Money datatypes

Function
Use the money and smallmoney datatypes to store monetary data. You can
use these types for U.S. dollars and other decimal currencies, but Adaptive
Server provides no means to convert from one currency to another. You
can use all arithmetic operations except modulo, and all aggregate
functions, with money and smallmoney data.

Accuracy
Both money and smallmoney are accurate to one ten-thousandth of a
monetary unit, but they round values up to two decimal places for display
purposes. The default print format places a comma after every three digits.

Range and storage size
Table 1-11 summarizes the range and storage requirements for money
datatypes:

Table 1-11: Money datatypes

Entering monetary values
Monetary values entered with E notation are interpreted as float. This may
cause an entry to be rejected or to lose some of its precision when it is
stored as a money or smallmoney value.

Datatype Range
Bytes of
Storage

money Monetary values between
+922,337,203,685,477.5807 and
-922,337,203,685,477.5808

8

smallmoney Monetary values between
+214,748.3647 and -214,748.3648

4

Timestamp datatype

18

money and smallmoney values can be entered with or without a preceding
currency symbol, such as the dollar sign ($), yen sign (¥), or pound sterling
sign (£). To enter a negative value, place the minus sign after the currency
symbol. Do not include commas in your entry.

Standards and compliance

Timestamp datatype

Function
Use the user-defined timestamp datatype in tables that are to be browsed in
Client-Library™ applications (see “Browse Mode” for more information).
Adaptive Server updates the timestamp column each time its row is
modified. A table can have only one column of timestamp datatype.

Creating a timestamp column
If you create a column named timestamp without specifying a datatype,
Adaptive Server defines the column as a timestamp datatype:

 create table testing
 (c1 int, timestamp, c2 int)

You can also explicitly assign the timestamp datatype to a column named
timestamp:

 create table testing
 (c1 int, timestamp timestamp, c2 int)

or to a column with another name:

 create table testing

Standard Complience level

SQL92 The money and smallmoney datatypes are Transact-SQL
extensions.

CHAPTER 1 System and User-Defined Datatypes

19

 (c1 int, t_stamp timestamp,c2 int)

You can create a column named timestamp and assign it another datatype
(although this could be confusing to other users and would not allow the
use of the browse functions in Open Client™ or with the tsequal function):

 create table testing
 (c1 int, timestamp datetime)

Date and time datatypes

Function
Use datetime and smalldatetime to store absolute date and time
information. Use timestamp to store binary-type information

Range and storage requirements
Table 1-12 summarizes the range and storage requirements for the
datetime and smalldatetime datatypes:

Table 1-12: Transact-SQL datatypes for storing dates and times

Entering datetime and smalldatetime data
The datetime and smalldatetime datatypes consist of a date portion either
followed by or preceded by a time portion. (You can omit either the date
or the time, or both.) Both datetime and smalldatetime values must be
enclosed in single or double quotes.

Datatype Range Bytes of Storage

datetime January 1, 1753 through December 31, 9999 8

smalldatetime January 1, 1900 through June 6, 2079 4

Date and time datatypes

20

• datetime columns hold dates between January 1, 1753 and December
31, 9999. datetime values are accurate to 1/300 of a second on
platforms that support this level of granularity. Storage size is 8 bytes:
4 bytes for the number of days since the base date of January 1, 1900
and 4 bytes for the time of day.

• smalldatetime columns hold dates from January 1, 1900 to June 6,
2079, with accuracy to the minute. Storage size is 4 bytes: 2 bytes for
the number of days since January 1, 1900 and 2 bytes for the number
of minutes since midnight.

Entering the date portion of a datetime or smalldatetime value

Dates consist of a month, day, and year and can be entered in a variety of
formats:

• You can enter the entire date as an unseparated string of 4, 6, or 8
digits, or use slash (/), hyphen (-), or period (.) separators between the
date parts.

• When entering dates as unseparated strings, use the appropriate
format for that string length. Use leading zeros for single-digit
years, months, and days. Dates entered in the wrong format may
be misinterpreted or result in errors.

• When entering dates with separators, use the set dateformat
option to determine the expected order of date parts. If the first
date part in a separated string is four digits, Adaptive Server
interprets the string as yyyy-mm-dd format.

• Some date formats accept 2-digit years (yy):

• Numbers less than 50 are interpreted as 20yy. For example, 01 is
2001, 32 is 2032, and 49 is 2049.

• Numbers equal to or greater than 50 are interpreted as 19yy. For
example, 50 is 1950, 74 is 1974, and 99 is 1999.

• You can specify the month as either a number or a name. Month
names and their abbreviations are language-specific and can be
entered in uppercase, lowercase, or mixed case.

• If you omit the date portion of a datetime or smalldatetime value,
Adaptive Server uses the default date of January 1, 1900.

Table 1-13 describes the acceptable formats for entering the date portion
of a datetime or smalldatetime value:

CHAPTER 1 System and User-Defined Datatypes

21

Table 1-13: Date formats for datetime and smalldatetime datatypes

Entering the time portion of a datetime or smalldatetime value

The time component of a datetime or smalldatetime value must be specified
as follows:

hours[:minutes[:seconds[:milliseconds]] [AM | PM]

• Use 12AM for midnight and 12PM for noon.

Date Format Interpretation Sample Entries Meaning

4-digit string with no separators Interpreted as yyyy. Date defaults
to Jan 1 of the specified year.

“1947” Jan 1 1947

6-digit string with no separators Interpreted as yymmdd.
For yy < 50, year is 20yy.
For yy >= 50, year is 19yy.

“450128”

“520128”

Jan 28 2045

Jan 28 1952

8-digit string with no separators Interpreted as yyyymmdd. “19940415” Apr 15 1994

String consisting of 2-digit month,
day, and year separated by slashes,
hyphens, or periods, or a
combination of the above.

The dateformat and language set
options determine the expected
order of date parts. For
us_english, the default order is
mdy.

For yy < 50, year is interpreted as
20yy. For yy >= 50, year is
interpreted as 19yy.

“4/15/94”
“4.15.94”
“4-15-94”
“04.15/94”

All of these entries
are interpreted as
Apr 15 1994 when
the dateformat
option is set to
mdy.

String consisting of 2-digit month,
2-digit day, and 4-digit year
separated by slashes, hyphens, or
periods, or a combination of the
above.

The dateformat and language set
options determine the expected
order of date parts. For
us_english, the default order is
mdy.

“04/15.1994” Interpreted as Apr
15 1994 when the
dateformat option
is set to mdy.

Month is entered in character form
(either full month name or its
standard abbreviation), followed
by an optional comma.

If 4-digit year is entered, date
parts can be entered in any order.

“April 15, 1994”
“1994 15 apr”
“1994 April 15”
“15 APR 1994”

All of these entries
are interpreted as
Apr 15 1994.

If day is omitted, all 4 digits of
year must be specified. Day
defaults to the first day of the
month.

“apr 1994” Apr 1 1994

If year is only 2 digits (yy), it is
expected to appear after the day.
For yy < 50, year is interpreted as
20yy. For yy >= 50, year is
interpreted as 19yy.

“mar 16 17”

“apr 15 94”

Mar 16 2017

Apr 15 1994

The empty string, “” Date defaults to Jan 1 1900. “” Jan 1 1900

Date and time datatypes

22

• A time value must contain either a colon or an AM or PM signifier.
The AM or PM can be entered in uppercase, lowercase, or mixed case.

• The seconds specification can include either a decimal portion
preceded by a decimal point or a number of milliseconds preceded by
a colon. For example, “12:30:20:1” means twenty seconds and one
millisecond past 12:30; “12:30:20.1” means twenty and one-tenth of
a second past 12:30.

• If you omit the time portion of a datetime or smalldatetime value,
Adaptive Server uses the default time of 12:00:00:000AM.

Display formats for datetime and smalldatetime values

The display format for datetime and smalldatetime values is “Mon dd yyyy
hh:mmAM” (or “PM”); for example, “Apr 15 1988 10:23PM”. To display
seconds and milliseconds, and to obtain additional date styles and date-
part orders, use the convert function to convert the data to a character
string. Adaptive Server may round or truncate millisecond values.

Table 1-14 lists some examples of datetime entries and their display
values:

Table 1-14: Examples of datetime entries

Finding datetime values that match a pattern

Use the like keyword to look for dates that match a particular pattern. If
you use the equality operator (=) to search datetime values for a particular
month, day, and year, Adaptive Server returns only those values for which
the time is precisely 12:00:00:000AM.

For example, if you insert the value “9:20” into a column named
arrival_time, Adaptive Server converts the entry into “Jan 1 1900
9:20AM”. If you look for this entry using the equality operator, it is not
found:

where arrival_time = "9:20" /* does not match */

Entry Value Displayed

“1947” Jan 1 1947 12:00AM

“450128 12:30:1PM” Jan 28 2045 12:30PM

“12:30.1PM 450128” Jan 28 2045 12:30PM

“14:30.22” Jan 1 1900 2:30PM

“4am” Jan 1 1900 4:00AM

CHAPTER 1 System and User-Defined Datatypes

23

You can find the entry using the like operator:

where arrival_time like "%9:20%"

When using like, Adaptive Server first converts the dates to datetime
format and then to varchar. The display format consists of the 3-character
month in the current language, 2 characters for the day, 4 characters for the
year, the time in hours and minutes, and “AM” or “PM.”

When searching with like, you cannot use the wide variety of input formats
that are available for entering the date portion of datetime and
smalldatetime values. Since the standard display formats do not include
seconds or milliseconds, you cannot search for seconds or milliseconds
with like and a match pattern, unless you are also using style 9 or 109 and
the convert function.

If you are using like, and the day of the month is a number between 1 and
9, insert 2 spaces between the month and the day to match the varchar
conversion of the datetime value. Similarly, if the hour is less than 10, the
conversion places 2 spaces between the year and the hour. The clause:

like May 2%

(with 1 space between “May” and “2”) finds all dates from May 20
through May 29, but not May 2. You do not need to insert the extra space
with other date comparisons, only with like, since the datetime values are
converted to varchar only for the like comparison.

Manipulating dates

You can do some arithmetic calculations on datetime values with the built-
in date functions. See “Date functions”.

Standards and compliance

Standard Complience level

SQL92 The datetime and smalldatetime datatypes are Transact-SQL
extensions.

Character datatypes

24

Character datatypes

Function
Use the character datatypes to store strings consisting of letters, numbers,
and symbols. Use the fixed-length datatypes, char(n) , and unichar (n) , and
the variable-length datatypes, varchar(n) and univarchar (n), for single-
byte character sets such as us_english. Use the fixed-length datatype,
nchar(n) , and the variable-length datatype, nvarchar(n) , for multibyte
character sets such as Japanese. The character datatypes can store a
maximum of pagesize; use the text datatype (described in text and image
datatypes) for strings longer than 255 characters.

Length and storage size
Use n to specify the length in characters for the fixed-length datatypes,
char(n) , unichar(n) , and nchar(n) . Entries shorter than the assigned length
are blank-padded; entries longer than the assigned length are truncated
without warning, unless the string_rtruncation option to the set command
is set to on. Fixed-length columns that allow nulls are internally converted
to variable-length columns.

Use n to specify the maximum length in characters for the variable-length
datatypes, varchar(n), univarchar(n), and nvarchar(n) . Data in variable-
length columns is stripped of trailing blanks; storage size is the actual
length of the data entered. Data in variable-length variables and
parameters retains all trailing blanks, but is not padded to the defined
length. Character literals are treated as variable-length datatypes.

Fixed-length columns tend to take more storage space than variable-length
columns, but are accessed somewhat faster. Table 1-15 summarizes the
storage requirements of the different character datatypes:

Table 1-15: Character datatypes

Datatype Stores Bytes of Storage

char(n) Fixed-length data, such as social security
numbers or postal codes, in single-byte
character sets.

n

unichar(n) Fixed-length uncode data, in single-byte
character sets.

n*@@unicharsize (@@unicharsize equals 2)

nchar(n) Fixed-length data in multibyte character sets n * @@ncharsize

CHAPTER 1 System and User-Defined Datatypes

25

Determining column length with system functions

Use the char_length string function and datalength system function to
determine column length:

• char_length returns the number of characters in the column, stripping
trailing blanks for variable-length datatypes.

• datalength returns the number of bytes, stripping trailing blanks for
data stored in variable-length columns.

When a char value is declared to allow NULLS, Adaptive Server stores it
internally as a varchar.

If the min or max aggregate functions are used on a char column, the result
returned is varchar, and is therefore stripped of all trailing spaces.

Entering character data
Character strings must be enclosed in single or double quotes. If you use
set quoted_identifier on, use single quotes for character strings; otherwise,
Adaptive Server treats them as identifiers.

Strings that include the double-quote character should be surrounded by
single quotes. Strings that include the single-quote character should be
surrounded by double quotes. For example:

’George said, "There must be a better way."’
"Isn’t there a better way?"

An alternative is to enter two quotation marks for each quotation mark you
want to include in the string. For example:

"George said, ""There must be a better way.""
’Isn’’t there a better way?’

varchar(n) Variable-length data, such as names, in
single-byte character sets.

Actual number of characters entered

univarchar(n) Variable-length Unicode data, in single-byte
character sets.

Actual number of characters * @@unicharsize

nvarchar(n) Variable-length data in multibyte character
sets

Actual number of characters * @@ncharsize

Datatype Stores Bytes of Storage

Character datatypes

26

To continue a character string onto the next line of your screen, enter a
backslash (\) before going to the next line.

Treatment of blanks
The following example creates a table named spaces that has both fixed-
and variable-length character columns:

create table spaces (cnot char(5) not null,
 cnull char(5) null,
 vnot varchar(5) not null,
 vnull varchar(5) null,
 explanation varchar(25) not null)

insert spaces values ("a", "b", "c", "d",
 "pads char-not-null only")
insert spaces values ("1 ", "2 ", "3 ",
 "4 ", "truncates trailing blanks")
insert spaces values (" e", " f", " g",
 " h", "leading blanks, no change")
insert spaces values (" w ", " x ", " y ",
 " z ", "truncates trailing blanks")
insert spaces values ("", "", "", "",
 "empty string equals space")

select "[" + cnot + "]",
 "[" + cnull + "]",
 "[" + vnot + "]",
 "[" + vnull + "]",
 explanation from spaces

 explanation
 ------- ------- ------- ------- --------------------
 [a] [b] [c] [d] pads char-not-null only
 [1] [2] [3] [4] truncates trailing blanks
 [e] [f] [g] [h] leading blanks, no change
 [w] [x] [y] [z] truncates trailing blanks
 [] [] [] [] empty string equals space

(5 rows affected)

This example illustrates how the column’s datatype and null type interact
to determine how blank spaces are treated:

CHAPTER 1 System and User-Defined Datatypes

27

• Only char not null and nchar not null columns are padded to the full
width of the column; char null columns are treated like varchar and
nchar null columns are treated like nvarchar.

• Only unichar not null columns are padded to the full width of the
column; unichar null columns are treated like univarchar.

• Preceding blanks are not affected.

• Trailing blanks are truncated except for char, unichar and nchar not null
columns.

• The empty string (“ ”) is treated as a single space. In char, nchar and
unichar not null columns, the result is a column-length field of spaces.

Manipulating character data
You can use the like keyword to search character strings for particular
characters and the built-in string functions to manipulate their contents.
Strings consisting of numbers can be used for arithmetic after being
converted to exact and approximate numeric datatypes with the convert
function.

Standards and compliance

Binary datatypes

Function
Use the binary datatypes, binary(n) and varbinary(n), to store raw binary
data, such as pictures, in a hexadecimal-like notation, up to the maximum
column size for your server’s logical page size.

Standard Complience level

SQL92 Transact-SQL provides the char and varchar SQL92 datatypes.
The nchar, nvarchar, unichar, and univarchar datatypes are
Transact-SQL extensions.

Binary datatypes

28

Valid binary and varbinary entries
Binary data begins with the characters “0x” and can include any
combination of digits and the uppercase and lowercase letters A through F.

Use n to specify the column length in bytes, or use the default length of 1
byte. Each byte stores 2 binary digits. If you enter a value longer than n,
Adaptive Server truncates the entry to the specified length without
warning or error.

Use the fixed-length binary type, binary(n), for data in which all entries are
expected to be approximately equal in length.

Use the variable-length binary type, varbinary(n), for data that is expected
to vary greatly in length.

Because entries in binary columns are zero-padded to the column length
(n), they may require more storage space than those in varbinary columns,
but they are accessed somewhat faster.

Entries of more than the max column size
Use the image datatype to store larger blocks of binary data (up to
2,147,483,647 bytes) on external data pages. You cannot use the image
datatype for variables or for parameters in stored procedures. For more
information, see the section “text and image datatypes.”

Treatment of trailing zeroes
All binary not null columns are padded with zeros to the full width of the
column. Trailing zeros are truncated in all varbinary data and in binary null
columns, since columns that accept null values must be treated as variable-
length columns.

The following example creates a table with all four variations of binary
and varbinary datatypes, NULL and NOT NULL. The same data is inserted
in all four columns and is padded or truncated according to the datatype of
the column.

create table zeros (bnot binary(5) not null,
 bnull binary(5) null,
 vnot varbinary(5) not null,
 vnull varbinary(5) null)

CHAPTER 1 System and User-Defined Datatypes

29

insert zeros values (0x12345000, 0x12345000,
 0x12345000, 0x12345000)
insert zeros values (0x123, 0x123, 0x123, 0x123)
select * from zeros
bnot bnull vnot vnull
------------ --------- ---------- ---------
0x1234500000 0x123450 0x123450 0x123450
0x0123000000 0x0123 0x0123 0x0123

Because each byte of storage holds 2 binary digits, Adaptive Server
expects binary entries to consist of the characters “0x” followed by an
even number of digits. When the “0x” is followed by an odd number of
digits, Adaptive Server assumes that you omitted the leading 0 and adds it
for you.

Input values “0x00” and “0x0” are stored as “0x00” in variable-length
binary columns (binary null, image and varbinary columns). In fixed-
length binary (binary not null) columns, the value is padded with zeros to
the full length of the field:

insert zeros values (0x0, 0x0,0x0, 0x0)
select * from zeros where bnot = 0x00
bnot bnull vnot vnull
---------- ------ ----- ------------
0x0000000000 0x00 0x00 0x00

If the input value does not include the “0x”, Adaptive Server assumes that
the value is an ASCII value and converts it. For example:

create table sample (col_a binary(8))

insert sample values (’002710000000ae1b’)

select * from sample
col_a

0x3030323731303030

Platform dependence
The exact form in which you enter a particular value depends upon the
platform you are using. Therefore, calculations involving binary data can
produce different results on different machines.

bit datatype

30

You cannot use the aggregate functions sum or avg with the binary
datatypes.

For platform-independent conversions between hexadecimal strings and
integers, use the inttohex and hextoint functions rather than the platform-
specific convert function. For details, see “Datatype conversion
functions”.

Standards and compliance

bit datatype

Function
Use the bit datatype for columns that contain true/false and yes/no types of
data. The status column in the syscolumns system table indicates the
unique offset position for bit datatype columns.

Entering data into bit columns
bit columns hold either 0 or 1. Integer values other than 0 or 1 are accepted,
but are always interpreted as 1.

Storage size
Storage size is 1 byte. Multiple bit datatypes in a table are collected into
bytes. For example, 7 bit columns fit into 1 byte; 9 bit columns take 2
bytes.

Standard Complience level

SQL92 The binary and varbinary datatypes are Transact-SQL
extensions.

CHAPTER 1 System and User-Defined Datatypes

31

Restrictions
Columns with a datatype of bit cannot be NULL and cannot have indexes
on them.

Standards and compliance

sysname datatype

Function
sysname is a user-defined datatype that is distributed on the Adaptive
Server installation tape and used in the system tables. Its definition is:

varchar(30) "not null"

Using the sysname datatype
You cannot declare a column, parameter, or variable to be of type
sysname. It is possible, however, to create a user-defined datatype with a
base type of sysname. You can then define columns, parameters, and
variables with the user-defined datatype.

Standards and compliance

Standard Complience level

SQL92 Transact-SQL extension

Standard Complience level

SQL92 All user-defined datatypes, including sysname, are Transact-
SQL extensions.

text and image datatypes

32

text and image datatypes

Function
text columns are variable-length columns that can hold up to
2,147,483,647 (231 - 1) bytes of printable characters.

image columns are variable-length columns that can hold up to
2,147,483,647 (231 - 1) bytes of hexadecimal-like data.

Defining a text or image column
You define a text or image column as you would any other column, with a
create table or alter table statement. text and image datatype definitions do
not include lengths. They do permit null values. The column definition
takes the form:

column_name {text | image} [null]

For example, the create table statement for the author’s blurbs table in the
pubs2 database with a text column, blurb, that permits null values, is:

create table blurbs
(au_id id not null,
copy text null)

To create the au_pix table in the pubs2 database with an image column:

create table au_pix
(au_id char(11) not null,
pic image null,
format_type char(11) null,
bytesize int null,
pixwidth_hor char(14) null,
pixwidth_vert char(14) null)

CHAPTER 1 System and User-Defined Datatypes

33

How Adaptive Server stores text and image data
Adaptive Server stores text and image data in a linked list of data pages that
are separate from the rest of the table. Each text or image page stores a
maximum of 1800 bytes of data. All text and image data for a table is
stored in a single page chain, regardless of the number of text and image
columns the table contains.

Putting additional pages on another device

You can place subsequent text and image data pages on a different logical
device with sp_placeobject.

Zero padding

image values that have an odd number of hexadecimal digits are padded
with a leading zero (an insert of “0xaaabb” becomes “0x0aaabb”).

Effect of partitioning on data storage

You can use the partition option of the alter table command to partition a
table that contains text and image columns. Partitioning the table creates
additional page chains for the other columns in the table, but has no effect
on the way the text and image columns are stored.

Initializing text and image columns
text and image columns are not initialized until you update them or insert
a non-null value. Initialization allocates at least one data page for each
non-null text or image data value. It also creates a pointer in the table to the
location of the text or image data.

For example, the following statements create the table testtext and
initialize the blurb column by inserting a non-null value. The column now
has a valid text pointer, and the first text page has been allocated.

create table texttest
(title_id varchar(6), blurb text null, pub_id
char(4))
insert texttest values
("BU7832", "Straight Talk About Computers is an
annotated analysis of what computers can do for you:

text and image datatypes

34

a no-hype guide for the critical user.", "1389")

The following statements create a table for image values and initialize the
image column:

create table imagetest
(image_id varchar(6), imagecol image null,
graphic_id char(4))
insert imagetest values
("94732", 0x0000008300000000000100000000013c,
"1389")

Note Remember to surround text values with quotation marks and precede
image values with the characters “0x”.

For information on inserting and updating text and image data with Client-
Library programs, see the Client-Library/C Reference Manual.

Saving space by allowing NULL
To save storage space for empty text or image columns, define them to
permit null values and insert nulls until you use the column. Inserting a null
value does not initialize a text or image column and, therefore, does not
create a text pointer or allocate storage. For example, the following
statement inserts values into the title_id and pub_id columns of the testtext
table created above, but does not initialize the blurb text column:

insert texttest
(title_id, pub_id) values ("BU7832", "1389")

After a text or image row is given a non-null value, it always contains at
least one data page. Resetting the value to null does not deallocate its data
page.

Getting information from sysindexes
Each table with text or image columns has an additional row in sysindexes
that provides information about these columns. The name column in
sysindexes uses the form “tablename”. The indid is always 255. These
columns provide information about text storage:

CHAPTER 1 System and User-Defined Datatypes

35

Table 1-16: Storage of text and image data

You can query the sysindexes table for information about these columns.
For example, the following query reports the number of data pages used
by the blurbs table in the pubs2 database:

select name, data_pgs(object_id("blurbs"), ioampg)
from sysindexes
where name = "tblurbs"
name
------------------------------ -----------
tblurbs 7

Note The system tables poster shows a one-to-one (1-1) relationship
between sysindexes and systabstats. This is correct, except for text and
image columns, for which information is not kept in systabstats.

Using readtext and writetext
Before you can use writetext to enter text data or readtext to read it, you
must initialize the text column. For details, see readtext and writetext.

Using update to replace existing text and image data with NULL reclaims
all allocated data pages except the first page, which remains available for
future use of writetext. To deallocate all storage for the row, use delete to
remove the entire row.

Determining how much space a column uses
sp_spaceused provides information about the space used for text data as
index_size :

sp_spaceused blurbs

Column Description

ioampg Pointer to the allocation page for the text page chain

first Pointer to the first page of text data

root Pointer to the last page

segment Number of the segment where the object resides

text and image datatypes

36

name rowtotal reserved data index_size unused
--------------- -------- --------- ------- ---------- ------
blurbs 6 32 KB 2 KB 14 KB 16 KB

Restrictions on text and image columns
text and image columns cannot be used:

• As parameters to stored procedures or as values passed to these
parameters

• As local variables

• In order by, compute, group by, and union clauses

• In an index

• In subqueries or joins

• In a where clause, except with the keyword like

• With the + concatenation operator

• In the if update clause of a trigger

Selecting text and image data
The following global variables return information on text and image data:

CHAPTER 1 System and User-Defined Datatypes

37

Table 1-17: text and image global variables

Converting text and image datatypes
You can explicitly convert text values to char, unichar, varchar, and
univarchar, and image values to binary or varbinary with the convert
function, but you are limited to the maximum length of the character and
binary datatypes, which is determined by the maximum column size for
your server’s logical page size. If you do not specify the length, the
converted value has a default length of 30 bytes. Implicit conversion is not
supported.

Pattern matching in text data
Use the patindex function to search for the starting position of the first
occurrence of a specified pattern in a text, varchar, univarchar, unichar or
char column. The % wildcard character must precede and follow the
pattern (except when you are searching for the first or last character).

You can also use the like keyword to search for a particular pattern. The
following example selects each text data value from the copy column of the
blurbs table that contains the pattern “Net Etiquette”.

select copy from blurbs
where copy like "%Net Etiquette%"

Variable Explanation

@@textptr The text pointer of the last text or image column inserted or
updated by a process. Do not confuse this global variable
with the textptr() function.

@@textcolid ID of the column referenced by @@textptr.

@@textdbid ID of a database containing the object with the column
referenced by @@textptr.

@@textobjid ID of the object containing the column referenced by
@@textptr.

 @@textsize Current value of the set textsize option, which specifies the
maximum length, in bytes, of text or image data to be
returned with a select statement. It defaults to 32K. The
maximum size for @@textsize is 231 - 1 (that is,
2,147,483,647).

@@textts Text timestamp of the column referenced by @@textptr.

User-defined datatypes

38

Duplicate rows
The pointer to the text or image data uniquely identifies each row.
Therefore, a table that contains text or image data cannot contain duplicate
rows unless all text and image data is NULL. If this is the case, the pointer
has not been initialized.

Standards and compliance

User-defined datatypes

Function
User-defined datatypes are built from the system datatypes and from the
sysname user-defined datatype. After you create a user-defined datatype,
you can use it to define columns, parameters, and variables. Objects that
are created from user-defined datatypes inherit the rules, defaults, null
type, and IDENTITY property of the user-defined datatype, as well as
inheriting the defaults and null type of the system datatypes on which the
user-defined datatype is based.

Creating frequently used datatypes in the model database
A user-defined datatype must be created in each database in which it will
be used. It is a good practice to create frequently used types in the model
database. These types are automatically added to each new database
(including tempdb, which is used for temporary tables) as it is created.

Standard Complience level

SQL92 The text and image datatypes are Transact-SQL extensions.

CHAPTER 1 System and User-Defined Datatypes

39

Creating a user-defined datatypes
Adaptive Server allows you to create user-defined datatypes, based on any
system datatype, with the sp_addtype system procedure. You cannot create
a user-defined datatype based on another user-defined datatype, such as
timestamp or the tid datatype in the pubs2 database.

The sysname datatype is an exception to this rule. Though sysname is a
user-defined datatype, you can use it to build user-defined datatypes.

User-defined datatypes are database objects. Their names are case-
sensitive and must conform to the rules for identifiers.

You can bind rules to user-defined datatypes with sp_bindrule and bind
defaults with sp_bindefault.

By default, objects built on a user-defined datatype inherit the user-defined
datatype’s null type or IDENTITY property. You can override the null type
or IDENTITY property in a column definition.

Renaming a user-defined datatype
Use sp_rename to rename a user-defined datatype.

Dropping a user-defined datatype
Use sp_droptype to remove a user-defined datatype from a database.

Note You cannot drop a datatype that is already in use in a table.

Getting help on datatypes
Use the sp_help system procedure to display information about the
properties of a system datatype or a user-defined datatype. You can also
use sp_help to display the datatype, length, precision, and scale for each
column in a table.

User-defined datatypes

40

Standards and compliance

Standard Complience level

SQL92 User-defined datatypes are a Transact-SQL extension.

41

C H A P T E R 2 Transact-SQL Functions

This chapter describes the Transact-SQL functions. Functions are used to
return information from the database. They are allowed in the select list,
in the where clause, and anywhere an expression is allowed. They are
often used as part of a stored procedure or program.

Types of functions
Table 2-1 lists the different types of Transact-SQL functions and describes
the type of information each returns.

Table 2-1: Types of Transact-SQL functions

Table 2-2 lists the functions in alphabetical order.

Table 2-2: List of Transact-SQL functions

Type of function Description

Aggregate functions Generate summary values that appear as new columns or as
additional rows in the query results.

Datatype conversion functions Change expressions from one datatype to another and specify new
display formats for date/time information.

Date functions Do computations on datetime and smalldatetime values and their
components, date parts.

Mathematical functions Return values commonly needed for operations on mathematical
data.

Security functions Return security-related information.

String functions Operate on binary data, character strings, and expressions.

System functions Return special information from the database.

Text and image functions Supply values commonly needed for operations on text and image
data.

Function Type Return value

abs Mathematical The absolute value of an expression.

acos Mathematical The angle (in radians) whose cosine is specified.

ascii String The ASCII code for the first character in an expression.

Types of functions

42

asin Mathematical The angle (in radians) whose sine is specified.

atan Mathematical The angle (in radians) whose tangent is specified.

atn2 Mathematical The angle (in radians) whose sine and cosine are specified.

avg Aggregate The numeric average of all (distinct) values.

ceiling Mathematical The smallest integer greater than or equal to the specified value.

char String The character equivalent of an integer.

charindex String Returns an integer representing the starting position of an
expression.

char_length String The number of characters in an expression.

col_length System The defined length of a column.

col_name System The name of the column whose table and column IDs are specified.

compare System Returns the following values, based on the collation rules that you
chose:

• 1 – indicates that char_expression1 is greater than
char_expression2

• 0 – indicates that char_expression1 is equal to char_expression2

• -1 – indicates that char_expression1 is less than
char_expression2

convert Datatype
Conversion

The specified value, converted to another datatype or a different
datetime display format.

cos Mathematical The cosine of the specified angle (in radians).

cot Mathematical The cotangent of the specified angle (in radians).

count Aggregate The number of (distinct) non-null values.

curunreservedpgs System The number of free pages in the specified disk piece.

data_pgs System The number of pages used by the specified table or index.

datalength System The actual length, in bytes, of the specified column or string.

dateadd Date The date produced by adding a given number of years, quarters,
hours, or other date parts to the specified date.

datediff Date The difference between two dates.

datename Date The name of the specified part of a datetime value.

datepart Date The integer value of the specified part of a datetime value.

db_id System The ID number of the specified database.

db_name System The name of the database whose ID number is specified.

degrees Mathematical The size, in degrees, of an angle with a specified number of radians.

difference String The difference between two soundex values.

exp Mathematical The value that results from raising the constant e to the specified
power.

floor Mathematical The largest integer that is less than or equal to the specified value.

Function Type Return value

CHAPTER 2 Transact-SQL Functions

43

getdate Date The current system date and time.

hextoint Datatype
Conversion

The platform-independent integer equivalent of the specified
hexadecimal string.

host_id System The host process ID of the client process.

host_name System The current host computer name of the client process.

index_col System The name of the indexed column in the specified table or view.

inttohex Datatype
Conversion

The platform-independent, hexadecimal equivalent of the specified
integer.

isnull System Substitutes the value specified in expression2 when expression1
evaluates to NULL.

is_sec_service_on Security “1” if the security service is active; “0” if it is not.

isnull String The specified expression, trimmed of leading blanks.

lct_admin System Manages the last-chance threshold.

license_enabled System “1” if the feature’s license is enabled; “0” if it is not.

log Mathematical The natural logarithm of the specified number.

log10 Mathematical The base 10 logarithm of the specified number.

lower String The uppercase equivalent of the specified expression.

max Aggregate The highest value in a column.

min Aggregate The lowest value in a column.

mut_excl_roles System The mutual exclusivity between two roles.

object_id System The object ID of the specified object.

object_name System The name of the object whose object ID is specified.

patindex String, Text and
Image

The starting position of the first occurrence of a specified pattern.

pi Mathematical The constant value 3.1415926535897936.

power Mathematical The value that results from raising the specified number to a given
power.

proc_role System 1 if the user has the correct role to execute the procedure; 0 if the
user does not have this role.

ptn_data_pgs System The number of data pages used by a partition.

radians Mathematical The size, in radians, of an angle with a specified number of degrees.

rand Mathematical A random value between 0 and 1, generated using the specified seed
value.

replicate String A string consisting of the specified expression repeated a given
number of times.

reserved_pgs System The number of pages allocated to the specified table or index.

reverse String The specified string, with characters listed in reverse order.

Function Type Return value

Types of functions

44

right String The part of the character expression, starting the specified number
of characters from the right.

role_contain System 1 if role2 contains role1.

role_id System The system role ID of the role whose name you specify.

role_name System The name of a role whose system role ID you specify.

round Mathematical The value of the specified number, rounded to a given number of
decimal places.

rowcnt System An estimate of the number of rows in the specified table.

rtrim String The specified expression, trimmed of trailing blanks.

show_role System The login’s currently active roles.

show_sec_services Security A list of the user’s currently active security services.

sign Mathematical The sign (+1 for positive, 0, or -1 for negative) of the specified
value.

sin Mathematical The sine of the specified angle (in radians).

sortkey System Values that can be used to order results based on collation behavior,
which allows you to work with character collation behaviors
beyond the default set of Latin-character-based dictionary sort
orders and case or accent sensitivity.

soundex String A 4-character code representing the way an expression sounds.

space String A string consisting of the specified number of single-byte spaces.

sqrt Mathematical The square root of the specified number.

str String The character equivalent of the specified number.

stuff String The string formed by deleting a specified number of characters from
one string and replacing them with another string.

substring String The string formed by extracting a specified number of characters
from another string.

sum Aggregate The total of the values.

suser_id System The server user’s ID number from the syslogins system table.

suser_name System The name of the current server user, or the user whose server user
ID is specified.

syb_sendmsg Sends a message to a User Datagram Protocol (UDP) port.
tan Mathematical The tangent of the specified angle (in radians).

textptr Text and Image The pointer to the first page of the specified text column.

textvalid Text and Image 1 if the pointer to the specified text column is valid; 0 if it is not.

to_unichar String A unichar expression having the value of the integer expression.

tsequal System Compares timestamp values to prevent update on a row that has
been modified since it was selected for browsing.

uhighsurr String 1 if the Unicode value at position start is the high half of a surrogate
pair (which should appear first in the pair); otherwise 0.

Function Type Return value

CHAPTER 2 Transact-SQL Functions

45

The following sections describe the types of functions in detail. The
remainder of the chapter contains descriptions of the individual functions
in alphabetical order.

Aggregate functions
The aggregate functions generate summary values that appear as new
columns in the query results. The aggregate functions are:

• avg

• count

• max

• min

• sum

Aggregate functions can be used in the select list or the having clause of a
select statement or subquery. They cannot be used in a where clause.

Each aggregate in a query requires its own worktable. Therefore, a query
using aggregates cannot exceed the maximum number of worktables
allowed in a query (12).

ulowsurr String 1 if the Unicode value at position start is the low half of a surrogate
pair (which should appear second in the pair); otherwise 0.

upper String The uppercase equivalent of the specified string.

uscalar String The Unicode scalar value for the first Unicode character in an
expression.

used_pgs System The number of pages used by the specified table and its clustered
index.

user System The name of the current server user.

user_id System The ID number of the specified user or the current user.

user_name System The name within the database of the specified user or the current
user.

valid_name System 0 if the specified string is not a valid identifier; a number other than
0 if the string is valid.

valid_user System 1 if the specified ID is a valid user or alias in at least one database
on this Adaptive Server.

Function Type Return value

Aggregate functions

46

When an aggregate function is applied to a char datatype value, it
implicitly converts the value to varchar, stripping all trailing blanks.
Likewise, a unichar datatype value is implicitly converted to univarchar.

The max, min, and count aggregate functions now have semantics that
include the unichar data type.

Aggregates used with group by
Aggregates are often used with group by. With group by, the table is
divided into groups. Aggregates produce a single value for each group.
Without group by, an aggregate function in the select list produces a single
value as a result, whether it is operating on all the rows in a table or on a
subset of rows defined by a where clause.

Aggregate functions and NULL values
Aggregate functions calculate the summary values of the non-null values
in a particular column. If the ansinull option is set off (the default), there is
no warning when an aggregate function encounters a null. If ansinull is set
on, a query returns the following SQLSTATE warning when an aggregate
function encounters a null:

Warning- null value eliminated in set function

Vector and scalar aggregates
Aggregate functions can be applied to all the rows in a table, in which case
they produce a single value, a scalar aggregate. They can also be applied
to all the rows that have the same value in a specified column or expression
(using the group by and, optionally, the having clause), in which case, they
produce a value for each group, a vector aggregate. The results of the
aggregate functions are shown as new columns.

You can nest a vector aggregate inside a scalar aggregate. For example:

select type, avg(price), avg(avg(price))
from titles
group by type
type
------------ ------------ ------------

CHAPTER 2 Transact-SQL Functions

47

UNDECIDED NULL 15.23
business 13.73 15.23
mod_cook 11.49 15.23
popular_comp 21.48 15.23
psychology 13.50 15.23
trad_cook 15.96 15.23

(6 rows affected)

The group by clause applies to the vector aggregate—in this case,
avg(price). The scalar aggregate, avg(avg(price)), is the average of the
average prices by type in the titles table.

In standard SQL, when a select_list includes an aggregate, all the
select_list columns must either have aggregate functions applied to them
or be in the group by list. Transact-SQL has no such restrictions.

Example 1 shows a select statement with the standard restrictions.
Example 2 shows the same statement with another item (title_id) added to
the select list. order by is also added to illustrate the difference in displays.
These “extra” columns can also be referenced in a having clause.

Example 1 select type, avg(price), avg(advance)
from titles
group by type

type
------------ ------------ ------------
UNDECIDED NULL NULL
business 13.73 6,281.25
mod_cook 11.49 7,500.00
popular_comp 21.48 7,500.00
psychology 13.50 4,255.00
trad_cook 15.96 6,333.33

(6 rows affected)

Example 2 select type, title_id, avg(price), avg(advance)
from titles
group by type
order by type

type title_id
----------- -------- ---------- ---------
UNDECIDED MC3026 NULL NULL

Aggregate functions

48

business BU1032 13.73 6,281.25
business BU1111 13.73 6,281.25
business BU2075 13.73 6,281.25
business BU7832 13.73 6,281.25
mod_cook MC2222 11.49 7,500.00
mod_cook MC3021 11.49 7,500.00
popular_comp PC1035 21.48 7,500.00
popular_comp PC8888 21.48 7,500.00
popular_comp PC9999 21.48 7,500.00
psychology PS1372 13.50 4,255.00
psychology PS2091 13.50 4,255.00
psychology PS2106 13.50 4,255.00
psychology PS3333 13.50 4,255.00
psychology PS7777 13.50 4,255.00
trad_cook TC3218 15.96 6,333.33
trad_cook TC4203 15.96 6,333.33
trad_cook TC7777 15.96 6,333.33

You can use either a column name or any other expression (except a
column heading or alias) after group by.

Null values in the group by column are put into a single group.

The compute clause in a select statement uses row aggregates to produce
summary values. The row aggregates make it possible to retrieve detail
and summary rows with one command. Example 3 illustrates this feature:

Example 3 select type, title_id, price, advance
from titles
where type = "psychology"
order by type
compute sum(price), sum(advance) by type

type title_id price advance
----------- ------- ---------- ---------
psychology PS1372 21.59 7,000.00
psychology PS2091 10.95 2,275.00
psychology PS2106 7.00 6,000.00
psychology PS3333 19.99 2,000.00
psychology PS7777 7.99 4,000.00
 sum sum
 ------- ----------
 67.52 21,275.00

Note the difference in display between Example 3 and the examples
without compute (Example 1 and Example 2).

CHAPTER 2 Transact-SQL Functions

49

Aggregate functions cannot be used on virtual tables such as sysprocesses
and syslocks.

If you include an aggregate function in the select clause of a cursor, that
cursor cannot be updated.

Aggregate functions as row aggregates
Row aggregate functions generate summary values that appear as
additional rows in the query results.

To use the aggregate functions as row aggregates, use the following
syntax:

Start of select statement

compute row_aggregate(column_name)
[, row_aggregate(column_name)]...

[by column_name [, column_name]...]

where:

• column_name is the name of a column. It must be enclosed in
parentheses. Only exact numeric, approximate numeric, and money
columns can be used with sum and avg.

One compute clause can apply the same function to several columns.
When using more than one function, use more than one compute
clause.

• by indicates that row aggregate values are to be calculated for
subgroups. Whenever the value of the by item changes, row aggregate
values are generated. If you use by, you must use order by.

Listing more than one item after by breaks a group into subgroups and
applies a function at each level of grouping.

The row aggregates make it possible to retrieve detail and summary rows
with one command. The aggregate functions, on the other hand, ordinarily
produce a single value for all the selected rows in the table or for each
group, and these summary values are shown as new columns.

The following examples illustrate the differences:

select type, sum(price), sum(advance)
from titles
where type like "%cook"
group by type

Aggregate functions

50

type
---------- ---------- ----------------
mod_cook 22.98 15,000.00
trad_cook 47.89 19,000.00

(2 rows affected)
select type, price, advance
from titles
where type like "%cook"
order by type
compute sum(price), sum(advance) by type
type price advance
---------- ---------- ----------------
mod_cook 2.99 15,000.00
mod_cook 19.99 0.00
 sum sum
 ---------- ----------------
 22.98 15,000.00
type price advance
---------- ---------- ----------------
trad_cook 11.95 4,000.00
trad_cook 14.99 8,000.00
trad_cook 20.95 7,000.00
 sum sum
 ---------- ----------------
 47.89 19,000.00
(7 rows affected)
type price advance
---------- ---------- ----------------
mod_cook 2.99 15,000.00
mod_cook 19.99 0.00

Compute Result:
---------------------- -----------------
 22.98 15,000.00
type price advance
---------- ---------- ----------------
trad_cook 11.95 4,000.00
trad_cook 14.99 8,000.00
trad_cook 20.95 7,000.00

Compute Result:
---------------------- -----------------
 47.89 19,000.00
(7 rows affected)

The columns in the compute clause must appear in the select list.

CHAPTER 2 Transact-SQL Functions

51

The order of columns in the select list overrides the order of the aggregates
in the compute clause. For example:

create table t1 (a int, b int, c int null)
insert t1 values(1,5,8)
insert t1 values(2,6,9)
(1 row affected)

compute sum(c), max(b), min(a)
select a, b, c from t1
 a b c
 ----------- ----------- -----------
 1 5 8
 2 6 9

Compute Result:
 ----------- ----------- -----------

1 6 17

If the ansinull option is set off (the default), there is no warning when a row
aggregate encounters a null. If ansinull is set on, a query returns the
following SQLSTATE warning when a row aggregate encounters a null:

Warning- null value eliminated in set function

You cannot use select into in the same statement as a compute clause
because statements that include compute generate tables that include the
summary results, which are not stored in the database.

Datatype conversion functions
Datatype conversion functions change expressions from one datatype to
another and specify new display formats for date/time information. The
datatype conversion functions are:

• convert()

• inttohex()

• hextoint()

The datatype conversion functions can be used in the select list, in the
where clause, and anywhere else an expression is allowed.

Datatype conversion functions

52

Adaptive Server performs certain datatype conversions automatically.
These are called implicit conversions. For example, if you compare a char
expression and a datetime expression, or a smallint expression and an int
expression, or char expressions of different lengths, Adaptive Server
automatically converts one datatype to another.

You must request other datatype conversions explicitly, using one of the
built-in datatype conversion functions. For example, before concatenating
numeric expressions, you must convert them to character expressions.

Adaptive Server does not allow you to convert certain datatypes to certain
other datatypes, either implicitly or explicitly. For example, you cannot
convert smallint data to datetime or datetime data to smallint. Unsupported
conversions result in error messages.

Table 2-3 indicates whether individual datatype conversions are
performed implicitly or explicitly or are unsupported.

Table 2-3: Explicit, implicit, and unsupported datatype conversions

From: To: tin
yi

nt

sm
al

lin
t

in
t

de
ci

m
al

nu
m

er
ic

re
al

flo
at

{n
]c

ha
r

[n
]v

ar
ch

ar

un
ic

ha
r

un
iv

ar
ch

ar

te
xt

sm
al

lm
on

ey

m
on

ey

bi
t

sm
al

ld
at

et
im

e

da
te

tim
e

bi
na

ry

va
rb

in
ar

y

im
ag

e

tinyint – I I I I I I E E E E U I I I U U I I U

smallint I – I I I I I E E E E U I I I U U I I U

int I I – I I I I E E E E U I I I U U I I U

decimal I I I I/E I/E I I E E E E U I I I U U I I U

numeric I I I I/E I/E I I E E E E U I I I U U I I U

real I I I I I – I E E E E U I I I U U I I U

float I I I I I I – E E E E U I I I U U I I U

[n]char E E E E E E E I I I I I E E E I I I I I

[n]varchar E E E E E E E I I I I I E E E I I I I I

unichar E E E E E E E I I – I I E E E E E I I I

univarchar E E E E E E E I I I – I E E E E E I I I

text U U U U U U U E E E E U U U U U U U U U

smallmoney I I I I I I I I I E E U – I I U U I I U

money I I I I I I I I I E E U I – I U U I I U

bit I I I I I I I I I E E U I I – U U I I U

smalldatetime U U U U U U U I I E E U U U U – I I I U

datetime U U U U U U U I I E E U U U U I – I I U

CHAPTER 2 Transact-SQL Functions

53

Converting character data to a non-character type
Character data can be converted to a non-character type—such as a money,
date/time, exact numeric, or approximate numeric type—if it consists
entirely of characters that are valid for the new type. Leading blanks are
ignored. However, if a char expression that consists of a blank or blanks is
converted to a datetime expression, SQL Server converts the blanks into
the default datetime value of “Jan 1, 1900”.

Syntax errors are generated when the data includes unacceptable
characters. Following are some examples of characters that cause syntax
errors:

• Commas or decimal points in integer data

• Commas in monetary data

• Letters in exact or approximate numeric data or bit stream data

• Misspelled month names in date/time data

Converting from one character type to another
When converting from a multibyte character set to a single-byte character
set, characters with no single-byte equivalent are converted to question
marks.

binary I I I I I I I I I I I U I I I I I – I I

varbinary I I I I I I I I I I I U I I I I I I – I

image U U U U U U U U U E E U U U U U U E E U

Key:

E Explicit datatype conversion is required.

I Conversion can be done either implicitly or with an explicit datatype conversion function.

I/E Explicit datatype conversion function required when there is loss of precision or scale
and arithabort numeric_truncation is on; otherwise, implicit conversion is allowed.

U Unsupported conversion.

– Conversion of a datatype to itself. These conversions are allowed but are meaningless.

Datatype conversion functions

54

text columns can be explicitly converted to char, nchar, varchar, unichar,
univarchar, or nvarchar. You are limited to the maximum length of the
character datatypes, which is determined by the maximum column size for
your server’s logical page size. If you do not specify the length, the
converted value has a default length of 30 bytes.

Converting numbers to a character type
Exact and approximate numeric data can be converted to a character type.
If the new type is too short to accommodate the entire string, an
insufficient space error is generated. For example, the following
conversion tries to store a 5-character string in a 1-character type:

select convert(char(1), 12.34)
Insufficient result space for explicit conversion
of NUMERIC value ’12.34’ to a CHAR field.

Note When converting float data to a character type, the new type should
be at least 25 characters long.

Rounding during conversion to and from money types
The money and smallmoney types store 4 digits to the right of the decimal
point, but round up to the nearest hundredth (.01) for display purposes.
When data is converted to a money type, it is rounded up to four places.

Data converted from a money type follows the same rounding behavior if
possible. If the new type is an exact numeric with less than three decimal
places, the data is rounded to the scale of the new type. For example, when
$4.50 is converted to an integer, it yields 5:

select convert(int, $4.50)

 5

Data converted to money or smallmoney is assumed to be in full currency
units such as dollars rather than in fractional units such as cents. For
example, the integer value of 5 is converted to the money equivalent of 5
dollars, not 5 cents, in the us_english language.

CHAPTER 2 Transact-SQL Functions

55

Converting date/time information
Data that is recognizable as a date can be converted to datetime or
smalldatetime. Incorrect month names lead to syntax errors. Dates that fall
outside the acceptable range for the datatype lead to arithmetic overflow
errors.

When datetime values are converted to smalldatetime, they are rounded to
the nearest minute.

Converting between numeric types
Data can be converted from one numeric type to another. If the new type
is an exact numeric whose precision or scale is not sufficient to hold the
data, errors can occur.

For example, if you provide a float or numeric value as an argument to a
built-in function that expects an integer, the value of the float or numeric
is truncated. However, Adaptive Server does not implicitly convert
numerics that have a fractional part but returns a scale error message. For
example, Adaptive Server returns error 241 for numerics that have a
fractional part and error 257 if other datatypes are passed.

Use the arithabort and arithignore options to determine how Adaptive
Server handles errors resulting from numeric conversions.

Note The arithabort and arithignore options have been redefined for release
10.0 or later. If you use these options in your applications, examine them
to be sure they are still producing the desired behavior.

Arithmetic overflow and divide-by-zero errors
Divide-by-zero errors occur when Adaptive Server tries to divide a
numeric value by zero. Arithmetic overflow errors occur when the new
type has too few decimal places to accommodate the results. This happens
during:

• Explicit or implicit conversions to exact types with a lower precision
or scale

Datatype conversion functions

56

• Explicit or implicit conversions of data that falls outside the
acceptable range for a money or date/time type

• Conversions of hexadecimal strings requiring more than 4 bytes of
storage using hextoint

Both arithmetic overflow and divide-by-zero errors are considered
serious, whether they occur during an implicit or explicit conversion. Use
the arithabort arith_overflow option to determine how Adaptive Server
handles these errors. The default setting, arithabort arith_overflow on, rolls
back the entire transaction in which the error occurs. If the error occurs in
a batch that does not contain a transaction, arithabort arith_overflow on does
not roll back earlier commands in the batch, and Adaptive Server does not
execute statements that follow the error-generating statement in the batch.
If you set arithabort arith_overflow off, Adaptive Server aborts the statement
that causes the error, but continues to process other statements in the
transaction or batch.You can use the @@error global variable to check
statement results.

Use the arithignore arith_overflow option to determine whether Adaptive
Server displays a message after these errors. The default setting, off,
displays a warning message when a divide-by-zero error or a loss of
precision occurs. Setting arithignore arith_overflow on suppresses warning
messages after these errors. The optional arith_overflow keyword can be
omitted without any effect.

Scale errors

When an explicit conversion results in a loss of scale, the results are
truncated without warning. For example, when you explicitly convert a
float, numeric, or decimal type to an integer, Adaptive Server assumes you
want the result to be an integer and truncates all numbers to the right of the
decimal point.

CHAPTER 2 Transact-SQL Functions

57

During implicit conversions to numeric or decimal types, loss of scale
generates a scale error. Use the arithabort numeric_truncation option to
determine how serious such an error is considered. The default setting,
arithabort numeric_truncation on, aborts the statement that causes the error,
but continues to process other statements in the transaction or batch. If you
set arithabort numeric_truncation off, Adaptive Server truncates the query
results and continues processing.

Note For entry level SQL92 compliance, set:

• arithabort arith_overflow off

• arithabort numeric_truncation on

• arithignore off

Domain errors

The convert() function generates a domain error when the function’s
argument falls outside the range over which the function is defined. This
happens rarely.

Conversions between binary and integer types
The binary and varbinary types store hexadecimal-like data consisting of a
“0x” prefix followed by a string of digits and letters.

These strings are interpreted differently by different platforms. For
example, the string “0x0000100” represents 65536 on machines that
consider byte 0 most significant and 256 on machines that consider byte 0
least significant.

Binary types can be converted to integer types either explicitly, using the
convert function, or implicitly. If the data is too short for the new type, it
is stripped of its “0x” prefix and zero-padded. If it is too long, it is
truncated.

Both convert and the implicit datatype conversions evaluate binary data
differently on different platforms. Because of this, results may vary from
one platform to another. Use the hextoint function for platform-
independent conversion of hexadecimal strings to integers, and the
inttohex function for platform-independent conversion of integers to
hexadecimal values.

Datatype conversion functions

58

Converting between binary and numeric or decimal types
In binary and varbinary data strings, the first two digits after “0x” represent
the binary type: “00” represents a positive number and “01” represents a
negative number. When you convert a binary or varbinary type to numeric
or decimal, be sure to specify the “00” or “01” values after the “0x” digit;
otherwise, the conversion will fail.

For example, here is how to convert the following binary data to numeric:

select convert(numeric
(38, 18),0x000000000000000006b14bd1e6eea0000000000000000000000000000000)

123.456000

This example converts the same numeric data back to binary:

select convert(binary,convert(numeric(38, 18), 123.456))

--
0x000000000000000006b14bd1e6eea0000000000000000000000000000000

Converting image columns to binary types
You can use the convert function to convert an image column to binary or
varbinary. You are limited to the maximum length of the binary datatypes,
which is determined by the maximum column size for your server’s logical
page size. If you do not specify the length, the converted value has a
default length of 30 characters.

Converting other types to bit
Exact and approximate numeric types can be converted to the bit type
implicitly. Character types require an explicit convert function.

The expression being converted must consist only of digits, a decimal
point, a currency symbol, and a plus or minus sign. The presence of other
characters generates syntax errors.

The bit equivalent of 0 is 0. The bit equivalent of any other number is 1.

CHAPTER 2 Transact-SQL Functions

59

Converting NULL value
You can use the convert function to change the NULL to NOT NULL and
NOT NULL to NULL.

Date functions
The date functions manipulate values of the datatype datetime or
smalldatetime.

Date functions can be used in the select list or where clause of a query.

Use the datetime datatype only for dates after January 1, 1753. datetime
values must be enclosed in single or double quotes. Use char, nchar,
varchar or nvarchar for earlier dates. Adaptive Server recognizes a wide
variety of date formats. See Datatype conversion functions and “Date and
time datatypes” for more information.

Adaptive Server automatically converts between character and datetime
values when necessary (for example, when you compare a character value
to a datetime value).

Date parts
The date parts, the abbreviations recognized by Adaptive Server, and the
acceptable values are:

Date Part Abbreviation Values

year yy 1753 – 9999 (2079 for smalldatetime)

quarter qq 1 – 4

month mm 1 – 12

week wk 1 – 54

day dd 1 – 31

dayofyear dy 1 – 366

weekday dw 1 – 7 (Sun.-Sat.)

hour hh 0 – 23

minute mi 0 – 59

second ss 0 – 59

millisecond ms 0 – 999

Mathematical functions

60

When you enter a year as two digits (yy):

• Numbers less than 50 are interpreted as 20yy. For example, 01 is
2001, 32 is 2032, and 49 is 2049.

• Numbers equal to or greater than 50 are interpreted as 19yy. For
example, 50 is 1950, 74 is 1974, and 99 is 1999.

Milliseconds can be preceded either with a colon or a period. If preceded
by a colon, the number means thousandths of a second. If preceded by a
period, a single digit means tenths of a second, two digits mean hundredths
of a second, and three digits mean thousandths of a second. For example,
“12:30:20:1” means twenty and one-thousandth of a second past 12:30;
“12:30:20.1” means twenty and one-tenth of a second past 12:30.
Adaptive Server may round or truncate millisecond values when adding
datetime data.

Mathematical functions
Mathematical functions return values commonly needed for operations on
mathematical data. Mathematical function names are not keywords.

Each function also accepts arguments that can be implicitly converted to
the specified type. For example, functions that accept approximate
numeric types also accept integer types. Adaptive Server automatically
converts the argument to the desired type.

The mathematical functions are:

• abs

• acos

• asin

• atan

• atn2

• ceiling

• cos

• cot

• degrees

CHAPTER 2 Transact-SQL Functions

61

• exp

• floor

• log

• log10

• pi

• power

• radians

• rand

• round

• sign

• sin

• sqrt

• tan

Error traps are provided to handle domain or range errors of these
functions. Users can set the arithabort and arithignore options to determine
how domain errors are handled:

• arithabort arith_overflow specifies behavior following a divide-by-zero
error or a loss of precision. The default setting, arithabort
arith_overflow on, rolls back the entire transaction or aborts the batch
in which the error occurs. If you set arithabort arith_overflow off,
Adaptive Server aborts the statement that causes the error, but
continues to process other statements in the transaction or batch.

• arithabort numeric_truncation specifies behavior following a loss of
scale by an exact numeric type during an implicit datatype
conversion. (When an explicit conversion results in a loss of scale, the
results are truncated without warning.) The default setting, arithabort
numeric_truncation on, aborts the statement that causes the error, but
continues to process other statements in the transaction or batch. If
you set arithabort numeric_truncation off, Adaptive Server truncates the
query results and continues processing.

Security functions

62

• By default, the arithignore arith_overflow option is turned off, causing
Adaptive Server to display a warning message after any query that
results in numeric overflow. Set the arithignore option on to ignore
overflow errors.

Note The arithabort and arithignore options have been redefined for
release 10.0 or later. If you use these options in your applications,
examine them to be sure they still produce the desired effects.

Security functions
Security functions return security-related information.

The security functions are:

• is_sec_service_on

• show_sec_services

String functions
String function operate on binary data, character strings, and expressions.
The string functions are:

• ascii

• char

• charindex

• char_length

• difference

• lower

• ltrim

• patindex

• replicate

CHAPTER 2 Transact-SQL Functions

63

• reverse

• right

• rtrim

• soundex

• space

• str

• stuff

• substring

• to_unichar

• uhighsurr

• ulowsurr

• upper

• uscalar

String functions can be nested, and they can be used in a select list, in a
where clause, or anywhere an expression is allowed. When you use
constants with a string function, enclose them in single or double quotes.
String function names are not keywords.

Each string function also accepts arguments that can be implicitly
converted to the specified type. For example, functions that accept
approximate numeric expressions also accept integer expressions.
Adaptive Server automatically converts the argument to the desired type.

When a string function accepts two character expressions but only one
expression is unichar, the other expression is “promoted” and internally
converted to unichar. This follows existing rules for mixed-mode
expressions. However, this conversion may cause truncation, since unichar
data sometimes takes twice the space.

Limits on string functions
Results of string functions are limited to 16K .

If set string_rtruncation is on, a user receives an error if an insert or update
truncates a character string. However, SQL Server does not report an error
if a displayed string is truncated. For example:

System functions

64

select replicate("a", 900) + replicate("B", 900)

Displays the first 16K of data, but the subsequent data is not displayed.

System functions
System functions return special information from the database. The
system functions are:

• col_length

• col_name

• curunreservedpgs

• data_pgs

• datalength

• db_id

• db_name

• host_id

• host_name

• index_col

• isnull

• lct_admin

• mut_excl_roles

• object_id

• object_name

• proc_role

• ptn_data_pgs

• reserved_pgs

• role_contain

• role_id

• role_name

CHAPTER 2 Transact-SQL Functions

65

• rowcnt

• show_role

• suser_id

• suser_name

• tsequal

• used_pgs

• user

• user_id

• user_name

• valid_name

• valid_user

The system functions can be used in a select list, in a where clause, and
anywhere an expression is allowed.

When the argument to a system function is optional, the current database,
host computer, server user, or database user is assumed.

Text and image functions
Text and image functions operate on text and image data. The text and
image functions are:

• textptr

• textvalid

Text and image built-in function names are not keywords. Use the set
textsize option to limit the amount of text or image data that is retrieved by
a select statement.

The patindex text function can be used on text and image columns and can
also be considered a text and image function.

Use the datalength function to get the length of data in text and image
columns.

text and image columns cannot be used:

Text and image functions

66

• As parameters to stored procedures

• As values passed to stored procedures

• As local variables

• In order by, compute, and group by clauses

• In an index

• In a where clause, except with the keyword like

• In joins

• In triggers

67

C H A P T E R 3 Functions: abs – difference

abs
Description Returns the absolute value of an expression.

Syntax abs(numeric_expression)

Parameters numeric_expression
– is a column, variable, or expression whose datatype is an exact
numeric, approximate numeric, money, or any type that can be
implicitly converted to one of these types.

Examples select abs(-1)

1

Returns the absolute value of -1.

Usage • abs, a mathematical function, returns the absolute value of a given
expression. Results are of the same type and have the same precision
and scale as the numeric expression.

• For general information about mathematical functions, see
“Mathematical functions” on page 60.

Standards SQL92 – Complience level: Transact-SQL extension

Permissions Any user can execute abs.

See also Functions – ceiling, floor, round, sign

acos
Description Returns the angle (in radians) whose cosine is specified.

Syntax acos(cosine)

ascii

68

Parameters cosine
– is the cosine of the angle, expressed as a column name, variable, or
constant of type float, real, double precision, or any datatype that can be
implicitly converted to one of these types.

Examples select acos(0.52)

1.023945

Returns the angle whose cosine is 0.52.

Usage • acos, a mathematical function, returns the angle (in radians) whose
cosine is the specified value.

• For general information about mathematical functions, see
“Mathematical functions” on page 60.

Standards SQL92 – Complience level: Transact-SQL extension

Permissions Any user can execute acos.

See also Functions – cos, degrees, radians

ascii
Description Returns the ASCII code for the first character in an expression.

Syntax ascii(char_expr|uchar_expr)

Parameters char_expr
 – is a character-type column name, variable, or constant expression of
char, varchar, nchar or nvarchar type.

uchar_expr
 – is a character-type column name, variable, or constant expression of
unichar or univarchar type.

Examples select au_lname, ascii(au_lname) from authors
where ascii(au_lname) < 70

au_lname
------------------------------ -----------
Bennet 66
Blotchet-Halls 66
Carson 67
DeFrance 68
Dull 68

CHAPTER 3 Functions: abs – difference

69

Returns the authors last names and the ACSII codes for the first letters in
their last names, if the ASCII code is less than 70.

Usage • ascii, a string function, returns the ASCII code for the first character
in the expression.

• When a string function accepts two character expressions but only
one expression is unichar, the other expression is “promoted” and
internally converted to unichar. This follows existing rules for mixed-
mode expressions. However, this conversion may cause truncation,
since unichar data sometimes takes twice the space.

• If char_expr or uchar_expr is NULL, returns NULL.

• For general information about string functions, see “String functions”
on page 62.

Standards SQL92 – Complience level: Transact-SQL extension

Permissions Any user can execute ascii.

See also Functions – char, to_unichar

asin
Description Returns the angle (in radians) whose sine is specified.

Syntax asin(sine)

Parameters sine
– is the sine of the angle, expressed as a column name, variable, or
constant of type float, real, double precision, or any datatype that can be
implicitly converted to one of these types.

Examples select asin(0.52)

0.546851

Usage • asin, a mathematical function, returns the angle (in radians) whose
sine is the specified value.

• For general information about mathematical functions, see
“Mathematical functions” on page 60.

Standards SQL92 – Complience level: Transact-SQL extension

Permissions Any user can execute asin.

atan

70

See also Functions – degrees, radians, sin

atan
Description Returns the angle (in radians) whose tangent is specified.

Syntax atan(tangent)

Parameters tangent
– is the tangent of the angle, expressed as a column name, variable, or
constant of type float, real, double precision, or any datatype that can be
implicitly converted to one of these types.

Examples select atan(0.50)

0.463648

Usage • atan, a mathematical function, returns the angle (in radians) whose
tangent is the specified value.

• For general information about mathematical functions, see
“Mathematical functions” on page 60.

Standards SQL92 – Complience level: Transact-SQL extension

Permissions Any user can execute atan.

See also Functions – atn2, degrees, radians, tan

atn2
Description Returns the angle (in radians) whose sine and cosine are specified.

Syntax atn2(sine, cosine)

Parameters sine
– is the sine of the angle, expressed as a column name, variable, or
constant of type float, real, double precision, or any datatype that can be
implicitly converted to one of these types.

CHAPTER 3 Functions: abs – difference

71

cosine
– is the cosine of the angle, expressed as a column name, variable, or
constant of type float, real, double precision, or any datatype that can be
implicitly converted to one of these types.

Examples select atn2(.50, .48)

0.805803

Usage • atn2, a mathematical function, returns the angle (in radians) whose
sine and cosine are specified.

• For general information about mathematical functions, see
“Mathematical functions” on page 60.

Standards SQL92 – Complience level: Transact-SQL extension

Permissions Any user can execute atn2.

See also Functions – atan, degrees, radians, tan

avg
Description Returns the numeric average of all (distinct) values.

Syntax avg([all | distinct] expression)

Parameters all
– applies avg to all values. all is the default.

distinct
– eliminates duplicate values before avg is applied. distinct is optional.

expression
– is a column name, constant, function, any combination of column
names, constants, and functions connected by arithmetic or bitwise
operators, or a subquery. With aggregates, an expression is usually a
column name. For more information, see “Expressions” on page 179.

Examples Example 1

select avg(advance), sum(total_sales)
from titles
where type = "business"

avg

72

------------------------ -----------
6,281.25 30788

Calculates the average advance and the sum of total sales for all business
books. Each of these aggregate functions produces a single summary value
for all of the retrieved rows.

Example 2

select type, avg(advance), sum(total_sales)
from titles
group by type

type
------------ ------------------------ -----------
UNDECIDED NULL NULL
business 6,281.25 30788
mod_cook 7,500.00 24278
popular_comp 7,500.00 12875
psychology 4,255.00 9939
trad_cook 6,333.33 19566

Used with a group by clause, the aggregate functions produce single values
for each group, rather than for the whole table. This statement produces
summary values for each type of book.

Example 3

select pub_id, sum(advance), avg(price)
from titles
group by pub_id
having sum(advance) > $25000 and avg(price) > $15

Groups the titles table by publishers and includes only those groups of
publishers who have paid more than $25,000 in total advances and whose
books average more than $15 in price.

pub_id
------ -------------------- --------------------
0877 41,000.00 15.41
1389 30,000.00 18.98

Usage • avg, an aggregate function, finds the average of the values in a
column. avg can only be used on numeric (integer, floating point, or
money) datatypes. Null values are ignored in calculating averages.

CHAPTER 3 Functions: abs – difference

73

• For general information about aggregate functions, see “Aggregate
functions” on page 45.

• When you average integer data, Adaptive Server treats the result as an
int value, even if the datatype of the column is smallint or tinyint. To
avoid overflow errors in DB-Library programs, declare all variables
for results of averages or sums as type int.

• You cannot use avg() with the binary datatypes.

• Since the average value is only defined on numeric datatypes, use
with Unicode expressions generates an error.

Standards SQL92 – Complience level: Transact-SQL extension

Permissions Any user can execute avg.

See also Functions – max, min

ceiling
Description Returns the smallest integer greater than or equal to the specified value.

Syntax ceiling(value)

Parameters value
– is a column, variable, or expression whose datatype is exact numeric,
approximate numeric, money, or any type that can be implicitly
converted to one of these types.

Examples Example 1

select ceiling(123.45)

124

Example 2

select ceiling(-123.45)

-123

Example 3

select ceiling(1.2345E2)

24.000000

char

74

Example 4

select ceiling(-1.2345E2)

-123.000000

Example 5

select ceiling($123.45)

124.00

Example 6

select discount, ceiling(discount) from salesdetail
where title_id = "PS3333"

discount
-------------------- --------------------

45.000000 45.000000
46.700000 47.000000
46.700000 47.000000
50.000000 50.000000

Usage • ceiling, a mathematical function, returns the smallest integer that is
greater than or equal to the specified value. The return value has the
same datatype as the value supplied.

For numeric and decimal values, results have the same precision as the
value supplied and a scale of zero.

• For general information about mathematical functions, see
“Mathematical functions” on page 60.

Standards SQL92 – Complience level: Transact-SQL extension

Permissions Any user can execute ceiling.

See also Command – set

Functions – abs, floor, round, sign

char
Description Returns the character equivalent of an integer.

Syntax char(integer_expr)

CHAPTER 3 Functions: abs – difference

75

Parameters integer_expr
– is any integer (tinyint, smallint, or int) column name, variable, or
constant expression between 0 and 255.

Examples Example 1

select char(42)

-
*

Example 2

select xxx = char(65)

xxx

A

Usage • char, a string function, converts a single-byte integer value to a
character value. (char is usually used as the inverse of ascii.)

• char returns a char datatype. If the resulting value is the first byte of a
multibyte character, the character may be undefined.

• If char_expr is NULL, returns NULL.

• For general information about string functions, see “String functions”
on page 62.

Reformatting output with char

• You can use concatenation and char() values to add tabs or carriage
returns to reformat output. char(10) converts to a return; char(9)
converts to a tab.

For example:

/* just a space */
select title_id + " " + title from titles where title_id = "T67061"
/* a return */
select title_id + char(10) + title from titles where title_id = "T67061"
/* a tab */
select title_id + char(9) + title from titles where title_id = "T67061"

T67061 Programming with Curses

T67061

charindex

76

Programming with Curses

T67061 Programming with Curses

Standards SQL92 – Complience level: Transact-SQL extension

Permissions Any user can execute char.

See also Functions – ascii, str

charindex
Description Returns an integer representing the starting position of an expression.

Syntax charindex(expression1, expression2)

Parameters expression
– is a binary or character column name, variable or constant expression.
Can be char, varchar, nchar, nvarchar, unichar or univarchar data, binary
or varbinary.

Examples select charindex("wonderful", notes)
from titles
where title_id = "TC3218"

46

Returns the position at which the character expression “wonderful” begins
in the notes column of the titles table.

Usage • charindex, a string function, searches expression2 for the first
occurrence of expression1 and returns an integer representing its
starting position. If expression1 is not found, charindex returns 0.

• If expression1 contains wildcard characters, charindex treats them as
literals.

• If char_expr or uchar_expr is NULL, returns NULL.

• If a varchar expression is given as one parameter and a unichar
expression as the other, the varchar expression is implicitly converted
to unichar (with possible truncation).

• For general information about string functions, see “String functions”
on page 62.

CHAPTER 3 Functions: abs – difference

77

Standards SQL92 – Complience level: Transact-SQL extension

Permissions Any user can execute charindex.

See also Function – patindex

char_length
Description Returns the number of characters in an expression.

Syntax char_length(char_expr|uchar_expr)

Parameters char_expr
– is a character-type column name, variable, or constant expression of
char, varchar, nchar or nvarchar type.

uchar_expr
– is a character-type column name, variable, or constant expression of
unichar or univarchar type.

Examples Example 1

select char_length(notes) from titles
where title_id = "PC9999"

39

Example 2

declare @var1 varchar(20), @var2 varchar(20), @char
char(20)
select @var1 = "abcd", @var2 = "abcd ",
 @char = "abcd"
select char_length(@var1), char_length(@var2),
char_length(@char)

 ----------- ----------- -----------
 4 8 20

Usage • char_length, a string function, returns an integer representing the
number of characters in a character expression or text value.

col_length

78

• For variable-length columns and variables, char_length returns the
number of characters (not the defined length of the column or
variable). If explicit trailing blanks are included in variable-length
variables, they are not stripped. For literals and fixed-length character
columns and variables, char_length does not strip the expression of
trailing blanks (see example 2).

• For multi-byte character sets, the number of characters in the
expression is usually less than the number of bytes; use datalength to
determine the number of bytes.

• For Unicode expressions, returns the number of Unicode values (not
bytes) in an expression. Surrogate pairs count as two Unicode values.

• If char_expr or uchar_expr is NULL, char_length returns NULL.

• For general information about string functions, see “String functions”
on page 62.

Standards SQL92 – Complience level: Transact-SQL extension

Permissions Any user can execute char_length.

See also Function – datalength

col_length
Description Returns the defined length of a column.

Syntax col_length(object_name, column_name)

Parameters object_name
– is name of a database object, such as a table, view, procedure, trigger,
default, or rule. The name can be fully qualified (that is, it can include
the database and owner name). It must be enclosed in quotes.

column_name
 – is the name of the column.

Examples select x = col_length("titles", "title")

x

80

Finds the length of the title column in the titles table. The “x” gives a
column heading to the result.

CHAPTER 3 Functions: abs – difference

79

Usage • col_length, a system function, returns the defined length of column.

• For general information about system functions, see “System
functions” on page 64.

• To find the actual length of the data stored in each row, use datalength.

• For text and image columns, col_length returns 16, the length of the
binary(16) pointer to the actual text page.

• For unichar columns, the defined length is the number of Unicode
values declared when the column was defined (not the number of
bytes represented).

Standards SQL92 – Complience level: Transact-SQL extension

Permissions Any user can execute col_length.

See also Function – datalength

col_name
Description Returns the name of the column whose table and column IDs are specified.

Syntax col_name(object_id, column_id[, database_id])

Parameters object_id
– is a numeric expression that is an object ID for a table, view, or other
database object. These are stored in the id column of sysobjects.

column_id
– is a numeric expression that is a column ID of a column. These are
stored in the colid column of syscolumns.

database_id
– is a numeric expression that is the ID for a database. These are stored
in the db_id column of sysdatabases.

Examples select col_name(208003772, 2)

title

Usage • col_name, a system function, returns the column’s name.

• For general information about system functions, see “System
functions” on page 64.

compare

80

Standards SQL92 – Complience level: Transact-SQL extension

Permissions Any user can execute col_name.

See also Functions – db_id, object_id

compare
Description Allows you to directly compare two character strings based on alternate

collation rules

Syntax compare (char_expression1|uchar_expression1),
(char_expression2|uchar_expression2)
[,{collation_name | collation_ID}]

Parameters char_expression1 or uchar_expression 1
– are the character expressions you want to compare to
char_expression2 or uchar_expression 2.

char_expression2 or uchar_expression2
– are the character expressions against which you want to compare
char_expression1 or uchar_expression1..

char_expression1 and char_expression2 can be one of the following:

• Character type (char, varchar, nchar, or nvarchar)

• Character variable, or

• Constant character expression, enclosed in single or double
quotation marks

uchar_expression1 and uchar_expression2 can be one of the following:

• Character type (unichar or univarchar)

• Character variable, or

• Constant character expression, enclosed in single or double
quotation marks

collation_name
– can be a quoted string or a character variable that specifies the
collation to use. Table 3-1 shows the valid values.

collation_ID
– is an integer constant or a variable that specifies the collation to use.
Table 3-1 shows the valid values.

CHAPTER 3 Functions: abs – difference

81

Usage • The compare function returns the following values, based on the
collation rules that you chose:

• 1 – indicates that char_expression1 or uchar_expression1 is
greater than char_expression2 or uchar_expression2.

• 0 – indicates that char_expression1 or uchar_expression1 is
equal to char_expression2 or uchar_expression2.

• -1 – indicates that char_expression1 or uchar_expression1 is less
than char_expression2 or uchar expression2.

• Both char_expression1, uchar_expression1, and char_expression2
and uchar_expression2 must be characters that are encoded in the
server’s default character set.

• Either char_expression1, uchar_expression 1, or char_expression2,
uchar_expression2, or both, can be empty strings:

• If char_expression2 or uchar_expression2 is empty, the function
returns 1.

• If both strings are empty, then they are equal, and the function
returns a 0 value.

• If char_expression1 or uchar_expression 1 is empty, the function
returns a -1.

The compare function does not equate empty strings and strings
containing only spaces, as does. compare uses the sortkey function to
generate collation keys for comparison. Therefore, a truly empty
string, a string with one space, or a string with two spaces will not
compare equally.

• If either char_expression1, uchar_expression1; or char_expression2,
uchar_expression2 is NULL, then the result will be NULL.

• If a varchar expression is given as one parameter and a unichar
expression is given as the other, the varchar expression is implicitly
converted to unichar (with possible truncation).

• If you do not specify a value for collation_name or collation_ID,
compare assumes binary collation.

• Table 3-1 lists the valid values for collation_name and collation_ID.

Table 3-1: Collation names and IDs

Description Collation name Collation ID

Binary sort binary 50

convert

82

Standards SQL92 – Complience level: Transact-SQL extension

Permissions Any user can execute compare.

See also Function – sortkey

convert
Description Returns the specified value, converted to another datatype or a different

datetime display format.

Syntax convert (datatype [(length) | (precision[, scale])]
[null | not null], expression [, style])

Default Unicode multilingual default 0

CP 850 Alternative no accent altnoacc 39

CP 850 Alternative lower case first altdict 45

CP 850 Alternative no case preference altnocsp 46

CP 850 Scandinavian dictionary scandict 47

CP 850 Scandinavian no case preference scannocp 48

GB Pinyin gbpinyin n/a

Latin-1 English, French, German dictionary dict 51

Latin-1 English, French, German no case nocase 52

Latin-1 English, French, German no case preference nocasep 53

Latin-1 English, French, German no accent noaccent 54

Latin-1 Spanish dictionary espdict 55

Latin-1 Spanish no case espnocs 56

Latin-1 Spanish no accent espnoac 57

ISO 8859-5 Cyrillic dictionary cyrdict 63

ISO 8859-5 Russian dictionary rusdict 58

ISO 8859-9 Turkish dictionary turdict 72

Shift-JIS binary order sjisbin 259

Thai dictionary thaidict 1

Description Collation name Collation ID

CHAPTER 3 Functions: abs – difference

83

Parameters datatype
– is the system-supplied datatype (for example, char(10), unichar (10),
varbinary (50), or int) into which to convert the expression. You cannot
use user-defined datatypes.

When Java is enabled in the database, datatype can also be a Java-SQL
class in the current database.

length
– is an optional parameter used with char, nchar, unichar, univarchar,
varchar, nvarchar, binary and varbinary datatypes. If you do not supply a
length, Adaptive Server truncates the data to 30 characters for the
character types and 30 bytes for the binary types. The maximum
allowable length for character and binary expression is 64K.

precision
– is the number of significant digits in a numeric or decimal datatype.
For float datatypes, precision is the number of significant binary digits
in the mantissa. If you do not supply a precision, Adaptive Server uses
the default precision of 18 for numeric and decimal datatypes.

scale
– is the number of digits to the right of the decimal point in a numeric,
or decimal datatype. If you do not supply a scale, Adaptive Server uses
the default scale of 0.

null | not null
– specifies the nullabilty of the result expression. If you do not supply
either null or not null, the converted result has the same nullability as the
expression.

expression
– is the value to be converted from one datatype or date format to
another.

When Java is enabled in the database, expression can be a value to be
converted to a Java-SQL class.

When Unichar is used as the destination data type, the default length of
30 Unicode values is used if no length is specified.

convert

84

style
is the display format to use for the converted data. When converting
money or smallmoney data to a character type, use a style of 1 to display
a comma after every 3 digits.

When converting datetime or smalldatetime data to a character type, use
the style numbers in Table 3-2 to specify the display format. Values in
the left-most column display 2-digit years (yy). For 4-digit years
(yyyy), add 100, or use the value in the middle column.

Table 3-2: Display formats for date/time information

The default values (style 0 or 100), and style 9 or 109 return the century
(yyyy). When converting to char or varchar from smalldatetime, styles
that include seconds or milliseconds show zeros in those positions.

Examples Example 1

select title, convert(char(12), total_sales)
from titles

Example 2

select title, total_sales
from titles
where convert(char(20), total_sales) like "1%"

Example 3

select convert(char(12), getdate(), 3)

Converts the current date to style “3”, dd/mm/yy .

Without Century (yy) With Century (yyyy) Output

N/A 0 or 100 mon dd yyyy hh:miAM (or PM)

1 101 mm/dd/yy

2 102 yy.mm.dd

3 103 dd/mm/yy

4 104 dd.mm.yy

5 105 dd-mm-yy

6 106 dd mon yy

7 107 mon dd, yy

8 108 hh:mm:ss

 N/A 9 or 109 mon dd yyyy hh:mi:ss:mmmAM (or PM)

10 110 mm-dd-yy

11 111 yy/mm/dd

12 112 yymmdd

CHAPTER 3 Functions: abs – difference

85

Example 4

select convert(varchar(12), pubdate, 3) from titles

If the value pubdate can be null, you must use varchar rather than char, or
errors may result.

Example 5

select convert(integer, 0x00000100)

Returns the integer equivalent of the string “0x00000100”. Results can
vary from one platform to another.

Example 6

select convert (binary, 10)

Returns the platform-specific bit pattern as a Sybase binary type.

Example 7

select convert(bit, $1.11)

Returns 1, the bit string equivalent of $1.11.

Example 8

select title, convert (char(100) not null,
total_sales) into #tempsales
from titles

Creates #tempsales with total_sales of datatype char(100), and does not
allow null values. Even if titles.total_sales was defined as allowing nulls,
#tempsales is created with #tempsales.total_sales not allowing null values.

Usage • convert, a datatype conversion function, converts between a wide
variety of datatypes and reformats date/time and money data for
display purposes.

• For more information about datatype conversion, see “Datatype
conversion functions” on page 51.

• convert() generates a domain error when the argument falls outside the
range over which the function is defined. This should happen rarely.

• Use null or not null to specify the nullability of a target column.
Specifically, this can be used with select into to create a new table and
change the datatype and nullability of existing columns in the source
table (See example 8, above).

cos

86

• You can use convert to convert an image column to binary or varbinary.
You are limited to the maximum length of the binary datatypes, which
is determined by the maximum column size for your server’s logical
page size. If you do not specify the length, the converted value has a
default length of 30 characters.

• Unichar expressions can be used as a destination data type or they can
be converted to another data type. Unichar expresssions can be
converted either explicitly between any other data type supported by
the server, or implicitly.

• If length is not specifed when unichar is used as a destination type, the
default length of 30 Unicode values is used. If the length of the
destination type is not large enough to accommodate the given
expression, as error message appears.

Conversions involving Java classes

• When Java is enabled in the database, you can use convert to change
datatypes in these ways:

• Convert Java object types to SQL datatypes.

• Convert SQL datatypes to Java types.

• Convert any Java-SQL class installed in Adaptive Server to any
other Java-SQL class installed in Adaptive Server if the compile-
time datatype of the expression (the source class) is a subclass or
superclass of the target class.

The result of the conversion is associated with the current database.

• See Java in Adaptive Server Enterprise for a list of allowed datatype
mappings and more information about datatype conversions
involving Java classes.

Standards SQL92 – Complience level: Transact-SQL extension

Permissions Any user can execute convert.

See also Datatypes – User-defined datatypes

Functions – hextoint, inttohex

cos
Description Returns the cosine of the specified angle.

CHAPTER 3 Functions: abs – difference

87

Syntax cos(angle)

Parameters angle
– is any approximate numeric (float, real, or double precision) column
name, variable, or constant expression.

Examples select cos(44)

0.999843

Usage • cos, a mathematical function, returns the cosine of the specified angle
(in radians).

• For general information about mathematical functions, see
“Mathematical functions” on page 60.

Standards SQL92 – Complience level: Transact-SQL extension

Permissions Any user can execute cos.

See also Functions – acos, degrees, radians, sin

cot
Description Returns the cotangent of the specified angle.

Syntax cot(angle)

Parameters angle
– is any approximate numeric (float, real, or double precision) column
name, variable, or constant expression.

Examples select cot(90)

-0.501203

Usage • cot, a mathematical function, returns the cotangent of the specified
angle (in radians).

• For general information about mathematical functions, see
“Mathematical functions” on page 60.

Standards SQL92 – Complience level: Transact-SQL extension

Permissions Any user can execute cot.

See also Functions – degrees, radians, sin

count

88

count
Description Returns the number of (distinct) non-null values or the number of selected

rows.

Syntax count([all | distinct] expression)

Parameters all
– applies count to all values. all is the default.

distinct
– eliminates duplicate values before count is applied. distinct is optional.

expression
is a column name, constant, function, any combination of column
names, constants, and functions connected by arithmetic or bitwise
operators, or a subquery. With aggregates, an expression is usually a
column name. For more information, see “Expressions” on page 179.

Examples Example 1

select count(distinct city)
from authors

Finds the number of different cities in which authors live.

Example 2

select type
from titles
group by type
having count(*) > 1

Lists the types in the titles table, but eliminates the types that include only
one book or none.

Usage • count, an aggregate function, finds the number of non-null values in a
column. For general information about aggregate functions, see
“Aggregate functions” on page 45.

• When distinct is specified, count finds the number of unique non-null
values. count can be used with all datatypes, including unichar, but
cannot be used with text and image. Null values are ignored when
counting.

• count(column_name) returns a value of 0 on empty tables, on columns
that contain only null values, and on groups that contain only null
values.

CHAPTER 3 Functions: abs – difference

89

• count(*) finds the number of rows. count(*) does not take any
arguments, and cannot be used with distinct. All rows are counted,
regardless of the presence of null values.

• When tables are being joined, include count(*) in the select list to
produce the count of the number of rows in the joined results. If the
objective is to count the number of rows from one table that match
criteria, use count(column_name).

• count() can be used as an existence check in a subquery. For example:

select * from tab where 0 <
 (select count(*) from tab2 where ...)

However, because count() counts all matching values, exists or in may
return results faster. For example:

select * from tab where exists
 (select * from tab2 where ...)

Standards SQL92 – Complience level: Transact-SQL extension

Permissions Any user can execute count.

See also Commands – compute Clause, group by and having Clauses, select, where
Clause

curunreservedpgs
Description Returns the number of free pages in the specified disk piece.

Syntax curunreservedpgs(dbid, lstart, unreservedpgs)

Parameters dbid
– is the ID for a database. These are stored in the db_id column of
sysdatabases.

lstart
 – is a page within the disk piece for which pages are to be returned.

unreservedpgs
 – is the default value to return if the dbtable is presently unavailable for
the requested database.

Examples Example 1

select db_name(dbid), d.name,
 curunreservedpgs(dbid, lstart, unreservedpgs)

data_pgs

90

 from sysusages u, sysdevices d
 where d.low <= u.size + vstart
 and d.high >= u.size + vstart -1
 and d.status &2 = 2

master master 184
master master 832
tempdb master 464
tempdb master 1016
tempdb master 768
model master 632
sybsystemprocs master 1024
pubs2 master 248

Returns the database name, device name, and the number of unreserved
pages for each device fragment.

Example 2

select curunreservedpgs (dbid, sysusages.lstart, 0)

Displays the number of free pages on the segment for dbid starting on
sysusages.lstart.

Usage • curunreservedpgs, a system function, returns the number of free pages
in a disk piece. For general information about system functions, see
“System functions” on page 64.

• If the database is open, the value is taken from memory; if the
database is not in use, the value is taken from the unreservedpgs
column in sysusages.

Standards SQL92 – Complience level: Transact-SQL extension

Permissions Any user can execute curunreservedpgs.

See also Functions – db_id, lct_admin

data_pgs
Description Returns the number of pages used by the specified table or index.

Syntax data_pgs(object_id,
{data_oam_pg_id | index_oam_pg_id})

CHAPTER 3 Functions: abs – difference

91

Parameters object_id
 – is an object ID for a table, view, or other database object. These are
stored in the id column of sysobjects.

data_oam_pg_id
 – is the page ID for a data OAM page, stored in the doampg column of
sysindexes.

index_oam_pg_id
 – is the page ID for an index OAM page, stored in the ioampg column
of sysindexes.

Examples Example 1

select sysobjects.name,
Pages = data_pgs(sysindexes.id, doampg)
from sysindexes, sysobjects
where sysindexes.id = sysobjects.id
 and sysindexes.id > 100
 and (indid = 1 or indid = 0)

Estimates the number of data pages used by user tables (which have object
IDs that are greater than 100). An indid of 0 indicates a table without a
clustered index; an indid of 1 indicates a table with a clustered index. This
example does not include nonclustered indexes or text chains.

Example 2

select sysobjects.name,
Pages = data_pgs(sysindexes.id, ioampg)
from sysindexes, sysobjects
where sysindexes.id = sysobjects.id
 and sysindexes.id > 100
 and (indid > 1)

Estimates the number of data pages used by user tables (which have object
IDs that are greater than 100), nonclustered indexes, and page chains.

Usage • data_pgs, a system function, returns the number of pages used by a
table (doampg) or index (ioampg). You must use this function in a
query run against the sysindexes table. For more information on
system functions, see “System functions” on page 64.

• data_pgs works only on objects in the current database.

• The result does not include pages used for internal structures. To see
a report of the number of pages for the table, clustered index, and
internal structures, use used_pgs.

datalength

92

Accuracy of results

• If used on the transaction log (syslogs), the result may not be accurate
and can be off by up to 16 pages.

Errors

• Instead of returning an error, data_pgs returns 0 if any of the
following are true:

• The object_id does not exist in sysobjects

• The control_page_id does not belong to the table specified by
object_id

• The object_id is -1

• The page_id is -1

Standards SQL92 – Complience level: Transact-SQL extension

Permissions Any user can execute data_pgs.

See also Functions – object_id, rowcnt

System procedure – sp_spaceused

datalength
Description Returns the actual length, in bytes, of the specified column or string.

Syntax datalength(expression)

Parameters expression
 – is a column name, variable, constant expression, or a combination of
any of these that evaluates to a single value. It can be of any datatype.
expression is usually a column name. If expression is a character
constant, it must be enclosed in quotes.

Examples select Length = datalength(pub_name)
from publishers

Length

13
16
 20

Finds the length of the pub_name column in the publishers table.

CHAPTER 3 Functions: abs – difference

93

Usage • datalength, a system function, returns the length of expression in
bytes.

• datalength finds the actual length of the data stored in each row.
datalength is useful on varchar univarhcar, varbinary, text and image
datatypes, since these datatypes can store variable lengths (and do not
store trailing blanks). When a char or unichar value is declared to
allow nulls, Adaptive Server stores it internally as varchar or
univarchar. For all other datatypes, datalength reports their defined
length.

• datalength of any NULL data returns NULL.

Standards SQL92 – Complience level: Transact-SQL extension

Permissions Any user can execute datalength.

See also Functions – char_length, col_length

dateadd
Description Returns the date produced by adding a given number of years, quarters,

hours, or other date parts to the specified date.

Syntax dateadd(date_part, integer, date)

Parameters date_part
 – is a date part or abbreviation. For a list of the date parts and
abbreviations recognized by Adaptive Server, see “Date parts” on page
59.

numeric
– is an integer expression.

date
– is either the function getdate, a character string in one of the
acceptable date formats, an expression that evaluates to a valid date
format, or the name of a datetime column.

Examples select newpubdate = dateadd(day, 21, pubdate)
from titles

Displays the new publication dates when the publication dates of all the
books in the titles table slip by 21 days.

datediff

94

Usage • dateadd, a date function, adds an interval to a specified date. For more
information about date functions, see “Date functions” on page 59.

• dateadd takes three arguments—the date part, a number, and a date.
The result is a datetime value equal to the date plus the number of date
parts.

If the date argument is a smalldatetime value, the result is also a
smalldatetime. You can use dateadd to add seconds or milliseconds to
a smalldatetime, but it is meaningful only if the result date returned by
dateadd changes by at least one minute.

• Use the datetime datatype only for dates after January 1, 1753.
datetime values must be enclosed in single or double quotes. Use char,
nchar, varchar or nvarchar for earlier dates. Adaptive Server
recognizes a wide variety of date formats. For more information, see
“User-defined datatypes” on page 38 and “Datatype conversion
functions” on page 51.

Adaptive Server automatically converts between character and
datetime values when necessary (for example, when you compare a
character value to a datetime value).

• Using the date part weekday or dw with dateadd is not logical, and
produces spurious results. Use day or dd instead.

Standards SQL92 – Complience level: Transact-SQL extension

Permissions Any user can execute dateadd.

See also Datatypes – Date and time datatypes

Commands – select, where Clause

Functions – datediff, datename, datepart, getdate

datediff
Description Returns the difference between two dates.

Syntax datediff(datepart, date1, date2)

Parameters datepart
– is a date part or abbreviation. For a list of the date parts and
abbreviations recognized by Adaptive Server, see “Date parts” on page
59.

CHAPTER 3 Functions: abs – difference

95

date1
– can be either the function getdate, a character string in an acceptable
date format, an expression that evaluates to a valid date format, or the
name of a datetime column.

date2
– can be either the function getdate, a character string in an acceptable
date format, an expression that evaluates to a valid date format, or the
name of a datetime or smalldatetime column.

Examples select newdate = datediff(day, pubdate, getdate())
from titles

This query finds the number of days that have elapsed between pubdate
and the current date (obtained with the getdate function).

Usage • datediff, a date function, calculates the number of date parts between
two specified dates. For more information about date functions, see
“Date functions” on page 59.

• datediff takes three arguments. The first is a date part. The second and
third are dates. The result is a signed integer value equal to date2 -
date1, in date parts.

• datediff produces results of datatype int, and causes errors if the result
is greater than 2,147,483,647. For milliseconds, this is approximately
24 days, 20:31.846 hours. For seconds, this is 68 years, 19 days,
3:14:07 hours.

• datediff results are always truncated, not rounded, when the result is
not an even multiple of the date part. For example, using hour as the
date part, the difference between “4:00AM” and “5:50AM” is 1.

When you use day as the date part, datediff counts the number of
midnights between the two times specified. For example, the
difference between January 1, 1992, 23:00 and January 2, 1992, 01:00
is 1; the difference between January 1, 1992 00:00 and January 1,
1992, 23:59 is 0.

• The month datepart counts the number of first-of-the-months between
two dates. For example, the difference between January 25 and
February 2 is 1; the difference between January 1 and January 31 is 0.

• When you use the date part week with datediff, you get the number of
Sundays between the two dates, including the second date but not the
first. For example, the number of weeks between Sunday, January 4
and Sunday, January 11 is 1.

datename

96

• If smalldatetime values are used, they are converted to datetime values
internally for the calculation. Seconds and milliseconds in
smalldatetime values are automatically set to 0 for the purpose of the
difference calculation.

Standards SQL92 – Complience level: Transact-SQL extension

Permissions Any user can execute datediff.

See also Datatypes – Date and time datatypes

Commands – select, where Clause

Functions – dateadd, datename, datepart, getdate

datename
Description Returns the name of the specified part of a datetime value.

Syntax datename (datepart, date)

Parameters datepart
– is a date part or abbreviation. For a list of the date parts and
abbreviations recognized by Adaptive Server, see “Date parts” on page
59.

date
– can be either the function getdate, a character string in an acceptable
date format, an expression that evaluates to a valid date format, or the
name of a datetime or smalldatetime column.

Examples select datename(month, getdate())

November

This example assumes a current date of November 20, 2000.

Usage • datename, a date function, returns the name of the specified part (such
as the month “June”) of a datetime or smalldatetime value, as a
character string. If the result is numeric, such as “23” for the day, it is
still returned as a character string.

• For more information about date functions, see “Date functions” on
page 59.

• The date part weekday or dw returns the day of the week (Sunday,
Monday, and so on) when used with datename.

CHAPTER 3 Functions: abs – difference

97

• Since smalldatetime is accurate only to the minute, when a
smalldatetime value is used with datename, seconds and milliseconds
are always 0.

Standards SQL92 – Complience level: Transact-SQL extension

Permissions Any user can execute datename.

See also Datatypes – Date and time datatypes \

Commands – select, where Clause

Functions – dateadd, datename, datepart, getdate

datepart
Description Returns the integer value of the specified part of a datetime value.

Syntax datepart(date_part, date)

Parameters date_part
 – is a date part. Table 3-3 lists the date parts, the abbreviations
recognized by datepart, and the acceptable values.

datepart

98

Table 3-3: Date parts and their values

When you enter a year as two digits (yy):

• Numbers less than 50 are interpreted as 20yy. For example, 01 is
2001, 32 is 2032, and 49 is 2049.

• Numbers equal to or greater than 50 are interpreted as 19yy. For
example, 50 is 1950, 74 is 1974, and 99 is 1999.

Milliseconds can be preceded by either a colon or a period. If
preceded by a colon, the number means thousandths of a second. If
preceded by a period, a single digit means tenths of a second, two
digits mean hundredths of a second, and three digits mean
thousandths of a second. For example, “12:30:20:1” means twenty
and one-thousandth of a second past 12:30; “12:30:20.1” means
twenty and one-tenth of a second past 12:30.

date
– can be either the function getdate, a character string in an acceptable
date format, an expression that evaluates to a valid date format, or the
name of a datetime or smalldatetime column.

Examples Example 1

select datepart(month, getdate())

11

Date Part Abbreviation Values

year yy 1753 – 9999 (2079 for smalldatetime)

quarter qq 1 – 4

month mm 1 – 12

week wk 1 – 54

day dd 1 – 31

dayofyear dy 1 – 366

weekday dw 1 – 7 (Sun.-Sat.)

hour hh 0 – 23

minute mi 0 – 59

second ss 0 – 59

millisecond ms 0 – 999

calweekofyear cwk 1-53

calyearofweek cyr 1753 – 9999

caldayofweek cdw 1 – 7

CHAPTER 3 Functions: abs – difference

99

This example assumes a current date of November 25, 1995.

Example 2

select datepart(year, pubdate) from titles where
type = "trad_cook"

1990
1985
1987

Example 3

select datepart(cwk,’1993/01/01’)

53

Example 4

select datepart(cyr,’1993/01/01’)

1992

Example 5

select datepart(cdw,’1993/01/01’)

5

Usage • datepart, a date function, returns an integer value for the specified part
of a datetime value. For more information about date functions, see
“Date functions” on page 59.

• datepart returns a number that follows ISO standard 8601, which
defines the first day of the week and the first week of the year.
Depending on whether the datepart function includes a value for
calweekofyear, calyearofweek, or caldayorweek, the date returned may
be different for the same unit of time. For example, if Adaptive Server
is configured to use US English as the default language:

datepart(cyr, "1/1/1989")

returns 1988, but:

datepart(yy, "1/1/1989)

returns 1989.

db_id

100

This disparity occurs because the ISO standard defines the first week
of the year as the first week that includes a Thursday and begins with
Monday.

For servers using US English as their default language, the first day
of the week as Sunday, and the first week of the year is the week that
contains January 4th.

• The date part weekday or dw returns the corresponding number when
used with datepart. The numbers that correspond to the names of
weekdays depend on the datefirst setting. Some language defaults
(including us_english) produce Sunday=1, Monday=2, and so on;
others produce Monday=1, Tuesday=2, and so on.The default
behavior can be changed on a per-session basis with set datefirst.

• calweekofyear, which can be abbreviated as cwk, returns the ordinal
position of the week within the year. calyearofweek, which can be
abbreviated as cyr, returns the year in which the week begins.
caldayofweek, which can abbreviated as cdw, returns the ordinal
position of the day within the week. You cannot use calweekofyear,
calyearofweek, and caldayofweek as date parts for dateadd, datediff and
datename.

• Since smalldatetime is accurate only to the minute, when a
smalldatetime value is used with datepart, seconds and milliseconds
are always 0.

• The values of the weekday date part are affected by the language
setting.

Standards SQL92 – Complience level: Transact-SQL extension

Permissions Any user can execute datepart.

See also Datatypes – Date and time datatypes

Commands – select, where Clause

Functions – dateadd, datediff, datename, getdate

db_id
Description Returns the ID number of the specified database.

Syntax db_id(database_name)

CHAPTER 3 Functions: abs – difference

101

Parameters database_name
 – is the name of a database. database_name must be a character
expression. If it is a constant expression, it must be enclosed in quotes.

Examples select db_id("sybsystemprocs")

4

Usage • db_id, a system function, returns the database ID number.

• If you do not specify a database_name, db_id returns the ID number
of the current database.

• For general information about system functions, see “System
functions” on page 64.

Standards SQL92 – Complience level: Transact-SQL extension

Permissions Any user can execute db_id.

See also Functions – db_name, object_id

db_name
Description Returns the name of the database whose ID number is specified.

Syntax db_name([database_id])

Parameters database_id
 – is a numeric expression for the database ID (stored in
sysdatabases.dbid).

Examples Example 1

select db_name()

Returns the name of the current database.

Example 2

select db_name(4)

sybsystemprocs

Usage • db_name, a system function, returns the database name.

degrees

102

• If no database_id is supplied, db_name returns the name of the
current database.

• For general information about system functions, see “System
functions” on page 64.

Standards SQL92 – Complience level: Transact-SQL extension

Permissions Any user can execute db_name.

See also Functions – col_name, db_id, object_name

degrees
Description Returns the size, in degrees, of an angle with the specified number of

radians.

Syntax degrees(numeric)

Parameters numeric
 – is a number, in radians, to convert to degrees.

Examples select degrees(45)

2578

Usage • degrees, a mathematical function, converts radians to degrees.
Results are of the same type as the numeric expression.

For numeric and decimal expressions, the results have an internal
precision of 77 and a scale equal to that of the expression.

When money datatypes are used, internal conversion to float may
cause loss of precision.

• For general information about mathematical functions, see
“Mathematical functions” on page 60.

Standards SQL92 – Complience level: Transact-SQL extension

Permissions Any user can execute degrees.

See also Functions – radians

CHAPTER 3 Functions: abs – difference

103

difference
Description Returns the difference between two soundex values.

Syntax difference(char_expr1|uchar_expr1), (char_expr2| uchar_expr2)

Parameters char_expr1
 – is a character-type column name, variable, or constant expression of
char, varchar, nchar or nvarchar type.

char_expr2
 – is another character-type column name, variable, or constant
expression of char, varchar, nchar or nvarchar type.

uchar_expr1
 – is a character-type column name, variable, or constant expression of
unichar type.

uchar_expr2
 – is another character-type column name, variable, or constant
expresssion of unichar type.

Examples Example 1

select difference("smithers", "smothers")

4

Example 2

select difference("smothers", "brothers")

2

Usage • difference, a string function, returns an integer representing the
difference between two soundex values.

• The difference function compares two strings and evaluates the
similarity between them, returning a value from 0 to 4. The best match
is 4.

The string values must be composed of a contiguous sequence of valid
single- or double-byte roman letters.

• If char_expr1, uchar_expr1, or char_expr2, uchar_expr2 is NULL,
returns NULL.

difference

104

• If a varchar expression is given as one parameter and a unichar
expression is given as the other, the varchar expression is implicitly
converted to unichar (with possible truncation).

• For general information about string functions, see “String functions”
on page 62.

Standards SQL92 – Complience level: Transact-SQL extension

Permissions Any user can execute difference.

See also Functions – soundex

105

C H A P T E R 4 Functions: exp – mut_excl_roles

exp
Description Returns the value that results from raising the constant e to the specified

power.

Syntax exp(approx_numeric)

Parameters approx_numeric
 – is any approximate numeric (float, real, or double precision) column
name, variable, or constant expression.

Examples select exp(3)

20.085537

Usage • exp, a mathematical function, returns the exponential value of the
specified value.

• For general information about mathematical functions, see
“Mathematical functions” on page 60.

Standards SQL92 – Complience level: Transact-SQL extension

Permissions Any user can execute exp.

See also Functions – log, log10, power

floor
Description Returns the largest integer that is less than or equal to the specified value.

Syntax floor(numeric)

Parameters numeric
 – is any exact numeric (numeric, dec, decimal, tinyint, smallint, or int),
approximate numeric (float, real, or double precision), or money column,
variable, constant expression, or a combination of these.

floor

106

Examples Example 1

select floor(123)

123

Example 2

select floor(123.45)

123

Example 3

select floor(1.2345E2)

123.000000

Example 4

select floor(-123.45)

-124

Example 5

select floor(-1.2345E2)

-124.000000

Example 6

select floor($123.45)

123.00

Usage • floor, a mathematical function, returns the largest integer that is less
than or equal to the specified value. Results are of the same type as the
numeric expression.

For numeric and decimal expressions, the results have a precision
equal to that of the expression and a scale of 0.

• For general information about mathematical functions, see
“Mathematical functions” on page 60.

Standards SQL92 – Complience level: Transact-SQL extension

CHAPTER 4 Functions: exp – mut_excl_roles

107

Permissions Any user can execute floor.

See also Functions – abs, ceiling, round, sign

getdate
Description Returns the current system date and time.

Syntax getdate()

Parameters None.

Examples Example 1

select getdate()

Nov 25 1995 10:32AM

Example 2

select datepart(month, getdate())

1

Example 3

select datename(month, getdate())

November

These examples assume a current date of November 25, 1995, 10:32 a.m.

Usage • getdate, a date function, returns the current system date and time.

• For more information about date functions, see “Date functions” on
page 59.

Standards SQL92 – Complience level: Transact-SQL extension

Permissions Any user can execute getdate.

See also Datatypes – Date and time datatypes

Functions – dateadd, datediff, datename, datepart

hextoint

108

hextoint
Description Returns the platform-independent integer equivalent of a hexadecimal

string.

Syntax hextoint (hexadecimal_string)

Parameters hexadecimal_string
 – is the hexadecimal value to be converted to an integer. This must be
either a character type column or variable name or a valid hexadecimal
string, with or without a “0x” prefix, enclosed in quotes.

Examples select hextoint ("0x00000100")

Returns the integer equivalent of the hexadecimal string “0x00000100”.
The result is always 256, regardless of the platform on which it is
executed.

Usage • hextoint, a datatype conversion function, returns the platform-
independent integer equivalent of a hexadecimal string.

• Use the hextoint function for platform-independent conversions of
hexadecimal data to integers. hextoint accepts a valid hexadecimal
string, with or without a “0x” prefix, enclosed in quotes, or the name
of a character type column or variable.

hextoint returns the integer equivalent of the hexadecimal string. The
function always returns the same integer equivalent for a given
hexadecimal string, regardless of the platform on which it is executed.

• For more information about datatype conversion, see “Datatype
conversion functions” on page 51.

Standards SQL92 – Complience level: Transact-SQL extension

Permissions Any user can execute hextoint.

See also Functions – convert, inttohex

host_id
Description Returns the host process ID or the client process.

Syntax host_id()

Parameters None.

CHAPTER 4 Functions: exp – mut_excl_roles

109

Examples select host_id()

24711

Usage • host_id, a system function, returns the host process ID of the client
process (not the Server process).

• For general information about system functions, see “String
functions” on page 62.

Standards SQL92 – Complience level: Transact-SQL extension

Permissions Any user can execute host_id.

See also Function – host_name

host_name
Description Returns the current host computer name of the client process.

Syntax host_name()

Parameters None.

Examples select host_name()

violet

Usage • host_name, a system function, returns the current host computer name
of the client process (not the Server process).

• For general information about system functions, see “System
functions” on page 64.

Standards SQL92 – Complience level: Transact-SQL extension

Permissions Any user can execute host_name.

See also Function – host_id

index_col

110

index_col
Description Returns the name of the indexed column in the specified table or view.

Syntax index_col (object_name, index_id, key_# [, user_id])

Parameters object_name
 – is the name of a table or view. The name can be fully qualified (that
is, it can include the database and owner name). It must be enclosed in
quotes.

index_id
 – is the number of object_name’s index. This number is the same as the
value of sysindexes.indid.

key_
– is a key in the index. This value is between 1 and sysindexes.keycnt
for a clustered index and between 1 and sysindexes.keycnt+1 for a
nonclustered index.

user_id
 – is the owner of object_name. If you do not specify user_id, it defaults
to the caller’s user ID.

Examples declare @keycnt integer
select @keycnt = keycnt from sysindexes

where id = object_id("t4")
and indid = 1

while @keycnt > 0
begin

select index_col("t4", 1, @keycnt)
select @keycnt = @keycnt - 1

end

Finds the names of the keys in the clustered index on table t4.

Usage • index_col, a system function, returns the name of the indexed column.

• index_col returns NULL if object_name is not a table or view name.

• For general information about system functions, see “String
functions” on page 62.

Standards SQL92 – Complience level: Transact-SQL extension

Permissions Any user can execute index_col.

See also Functions – object_id

System procedures – sp_helpindex

CHAPTER 4 Functions: exp – mut_excl_roles

111

index_colorder
Description Returns the column order.

Syntax index_colorder (object_name, index_id, key_#
[, user_id])

Parameters object_name
 – is the name of a table or view. The name can be fully qualified (that
is, it can include the database and owner name). It must be enclosed in
quotes.

index_id
 – is the number of object_name’s index. This number is the same as the
value of sysindexes.indid.

key_
– is a key in the index. Valid values are 1 and the number of keys in
the index. The number of keys is stored in sysindexes.keycnt.

user_id
 – is the owner of object_name. If you do not specify user_id, it defaults
to the caller’s user ID.

Examples select name, index_colorder("sales", indid, 2)
from sysindexes
where id = object_id ("sales")
and indid > 0

name
------------------------- -------------------------
salesind DESC

Returns “DESC” because the salesind index on the sales table is in
descending order.

Usage • index_colorder, a system function, returns “ASC” for columns in
ascending order or “DESC” for columns in descending order.

• index_colorder returns NULL if object_name is not a table name or if
key_# is not a valid key number.

• For general information about system functions, see “String
functions” on page 62.

Standards SQL92 – Complience level: Transact-SQL extension

Permissions Any user can execute index_colorder.

inttohex

112

inttohex
Description Returns the platform-independent hexadecimal equivalent of the specified

integer.

Syntax inttohex (integer_expression)

Parameters integer_expression
 – is the integer value to be converted to a hexadecimal string.

Examples select inttohex (10)

0000000A

Usage • inttohex, a datatype conversion function, returns the platform-
independent hexadecimal equivalent of an integer, without a “0x”
prefix.

• Use the inttohex function for platform-independent conversions of
integers to hexadecimal strings. inttohex accepts any expression that
evaluates to an integer. It always returns the same hexadecimal
equivalent for a given expression, regardless of the platform on which
it is executed.

• For more information about datatype conversion, see “Datatype
conversion functions” on page 51.

Standards SQL92 – Complience level: Transact-SQL extension

Permissions Any user can execute inttohex.

See also Functions – convert, hextoint

isnull
Description Substitutes the value specified in expression2 when expression1 evaluates

to NULL.

Syntax isnull(expression1, expression2)

Parameters expression
 – is a column name, variable, constant expression, or a combination of
any of these that evaluates to a single value. It can be of any datatype,
including unichar. expression is usually a column name. If expression is
a character constant, it must be enclosed in quotes.

CHAPTER 4 Functions: exp – mut_excl_roles

113

Examples select isnull(price,0)
from titles

Returns all rows from the titles table, replacing null values in price with 0.

Usage • isnull, a system function, substitutes the value specified in expression2
when expression1 evaluates to NULL. For general information about
system functions, see “String functions” on page 62.

• The datatypes of the expressions must convert implicitly, or you must
use the convert function.

Standards SQL92 – Complience level: Transact-SQL extension

Permissions Any user can execute isnull.

See also Function – convert

is_sec_service_on
Description Returns 1 if the security service is active and 0 if it is not.

Syntax is_sec_service_on(security_service_nm)

Parameters security_service_nm
 – is the name of the security service.

Examples select is_sec_service_on("unifiedlogin")

Usage • Use is_sec_service_on to determine whether a given security service
is active during the session.

• To find valid names of security services, run this query:

select * from syssecmechs

The result might look something like:

sec_mech_name available_service
------------- --------------------
dce unifiedlogin
dce mutualauth
dce delegation
dce integrity
dce confidentiality
dce detectreplay
dce detectseq

lct_admin

114

The available_service column displays the security services that are
supported by Adaptive Server.

Standards SQL92 – Complience level: Transact-SQL extension

Permissions Any user can execute is_sec_service_on.

See also Function – show_sec_services

lct_admin
Description Manages the last-chance threshold.

Returns the current value of the last-chance threshold.

Aborts transactions in a transaction log that has reached its last-chance
threshold.

Syntax lct_admin({{"lastchance" | "logfull" }, database_id
|"reserve", {log_pages | 0 }
| "abort", process-id [, database-id]})

Parameters lastchance
 – creates a last-chance threshold in the specified database.

logfull
 – returns 1 if the last-chance threshold has been crossed in the specified
database and 0 if it has not.

database_id
 – specifies the database.

reserve
 – obtains either the current value of the last-chance threshold or the
number of log pages required for dumping a transaction log of a
specified size.

log_pages
 – is the number of pages for which to determine a last-chance
threshold.

CHAPTER 4 Functions: exp – mut_excl_roles

115

0
 – returns the current value of the last-chance threshold. The size of the
last-chance threshold in a database with separate log and data segments
does not vary dynamically. It has a fixed value, based on the size of the
transaction log. The last-chance threshold varies dynamically in a
database with mixed log and data segments.

abort
 – aborts transactions in a database where the transaction log has
reached its last-chance threshold. Only transactions in LOG SUSPEND
mode can be aborted.

process-id
 – The ID (spid) of a process in log-suspend mode. A process is placed
in log-suspend mode when it has open transactions in a transaction log
that has reached its last-chance threshold (LCT).

database-id
 – the ID of a database whose transaction log has reached its LCT. If
process-id is 0, all open transactions in the specified database are
terminated.

Examples Example 1

select lct_admin("lastchance", 1)

This creates the log segment last-chance threshold for the database with
dbid 1. It returns the number of pages at which the new threshold resides.
If there was a previous last-chance threshold, it is replaced.

Example 2

select lct_admin("logfull", 6)

Returns 1 if the last-chance threshold for the database with db_id of 6 has
been crossed, and 0 if it has not.

Example 3

select lct_admin("reserve", 64)

16

Calculates and returns the number of log pages that would be required to
successfully dump the transaction log in a log containing 64 pages.

Example 4

select lct_admin("reserve",0)

lct_admin

116

Returns the current last-chance threshold of the transaction log in the
database from which the command was issued.

Example 5

select lct_admin("abort", 83)

Aborts transactions belonging to process 83. The process must be in log-
suspend mode. Only transactions in a transaction log that has reached its
LCT are terminated.

Example 6

select lct_admin("abort", 0, 5)

Aborts all open transactions in the database with database ID 5.

This form awakens any processes that may be suspended at the log
segment last-chance threshold.

Usage • lct_admin, a system function, manages the log segment’s last-chance
threshold. For general information about system functions, see
“String functions” on page 62.

• If lct_admin(“lastchance”, dbid) returns zero, the log is not on a
separate segment in this database, so no last-chance threshold exists.

• Whenever you create a database with a separate log segment, the
server creates a default last chance threshold that defaults to calling
sp_thresholdaction. This happens even if a procedure called
sp_thresholdaction does not exist on the server at all.

If your log crosses the last-chance threshold, Adaptive Server
suspends activity, tries to call sp_thresholdaction, finds it does not
exist, generates an error, then leaves processes suspended until the log
can be truncated.

• To terminate the oldest open transaction in a transaction log that has
reached its LCT, enter the ID of the process that initiated the
transaction.

• To terminate all open transactions in a transaction log that has reached
its LCT, enter 0 as the process_id, and specify a database ID in the
database-id parameter.

• For more information, see the System Administration Guide.

Standards SQL92 – Complience level: Transact-SQL extension

Permissions Only a System Administrator can execute lct_admin abort. Any user can
execute the other lct_admin options.

CHAPTER 4 Functions: exp – mut_excl_roles

117

See also Command – dump transaction

Function – curunreservedpgs

license_enabled
Description Returns 1 if a feature’s license is enabled, 0 if the license is not enabled, or

null if you specify an invalid license name.

Syntax license_enabled("ase_server" | "ase_ha" | "ase_dtm" | "ase_java" |
"ase_asm")

Parameters ase_server
 – specifies the license for Adaptive Server.

ase_ha
 – specifies the license for the Adaptive Server high availability feature.

ase_dtm
 – specifies the license for Adaptive Server distributed transaction
management features.

ase_java
 – specifies the license for the Adaptive Server Java feature.

ase_asm
 – specifies the license for Adaptive Server advanced security
mechanism.

Examples select license_enabled("ase_dtm")

1

Indicates that the license for the Adaptive Server distributed transaction
management feature is enabled.

Usage • For information about installing license keys for Adaptive Server
features, see your Installation Guide.

Standards SQL92 – Complience level: Transact-SQL extension

Permissions Any user can execute license_enabled.

See also System procedure – sp_configure

lockscheme

118

lockscheme
Description Returns the locking scheme of the specified object as a string.

Syntax lockscheme(object_name)
or,
lockscheme(dbid, object_id)

Parameters oject_name
 – is the name of the object you are searching. If you do not specify a
fully qualified object name, the current database is searched.

dbid
the ID of the database specified by object_name.

object_id
the ID of the object indicated by object_name

Examples Example 1

select lockscheme(title)
from titles

Selects the locking scheme for the title column of the titles table.

Example 2

select lockscheme(4, 224000798)

Selects the locking scheme for object_id 224000798 (in this case, the titles
table) from database ID 4 (the pubs2 database).

Usage • lockscheme() returns varchar(11) and allows NULLs

• If the specified object is not a table, lockscheme() returns the string
“not a table.”

• For general information about mathematical functions, see
“Mathematical functions” on page 60.

Standards SQL92 – Complience level: Transact-SQL extension

Permissions Any user can execute lockscheme().

log
Description Returns the natural logarithm of the specified number.

Syntax log(approx_numeric)

CHAPTER 4 Functions: exp – mut_excl_roles

119

Parameters approx_numeric
 – is any approximate numeric (float, real, or double precision) column
name, variable, or constant expression.

Examples select log(20)

2.995732

Usage • log, a mathematical function, returns the natural logarithm of the
specified value.

• For general information about mathematical functions, see
“Mathematical functions” on page 60.

Standards SQL92 – Complience level: Transact-SQL extension

Permissions Any user can execute log.

See also Functions – log10, power

log10
Description Returns the base 10 logarithm of the specified number.

Syntax log10(approx_numeric)

Parameters approx_numeric
 – is any approximate numeric (float, real, or double precision) column
name, variable, or constant expression.

Examples select log10(20)

1.301030

Usage • log10, a mathematical function, returns the base 10 logarithm of the
specified value.

• For general information about mathematical functions, see
“Mathematical functions” on page 60.

Standards SQL92 – Complience level: Transact-SQL extension

Permissions Any user can execute log10.

See also Functions – log, power

lower

120

lower
Description Returns the lowercase equivalent of the specified expression.

Syntax lower(char_expr|uchar_expr)

Parameters char_expr
 – is a character-type column name, variable, or constant expression of
char, varchar, nchar or nvarchar type.

uchar_expr
 – is a character-type column name, variable, or constant expression of
unichar or univarchar type

Examples select lower(city) from publishers

boston
washington
berkeley

Usage • lower, a string function, converts uppercase to lowercase, returning a
character value.

• lower is the inverse of upper.

• If char_expr or uchar_expr is NULL, returns NULL.

• For general information about string functions, see “String functions”
on page 62.

Standards SQL92 – Complience level: Transact-SQL extension

Permissions Any user can execute lower.

See also Functions – upper

ltrim
Description Returns the specified expression, trimmed of leading blanks.

Syntax ltrim(char_expr|uchar_expr)

Parameters char_expr
 – is a character-type column name, variable, or constant expression of
char, varchar, nchar or nvarchar type.

CHAPTER 4 Functions: exp – mut_excl_roles

121

uchar_expr
–is a character-type column name, variable, or constant expression of
unichar, or univarchar type.

Examples select ltrim(" 123")

123

Usage • ltrim, a string function, removes leading blanks from the character
expression. Only values equivalent to the space character in the
current character set are removed.

• If char_expr or uchar_expr is NULL, returns NULL.

• For Unicode expressions, returns the lower-case Unicode equivalent
of the specified expression. Characters in the expression that have no
lower-case equivalent are left unmodified.

• For general information about string functions, see “String functions”
on page 62.

Standards SQL92 – Complience level: Transact-SQL extension

Permissions Any user can execute ltrim.

See also Functions – rtrim

max
Description Returns the highest value in an expression.

Syntax max(expression)

Parameters expression
 – is a column name, constant, function, any combination of column
names, constants, and functions connected by arithmetic or bitwise
operators, or a subquery.

Examples Example 1

select max(discount) from salesdetail

 62.200000

Returns the maximum value in the discount column of the salesdetail table
as a new column.

min

122

Example 2

select discount from salesdetail
compute max(discount)

Returns the maximum value in the discount column of the salesdetail table
as a new row.

Usage • max, an aggregate function, finds the maximum value in a column or
expression. For general information about aggregate functions, see
“Aggregate functions” on page 45.

• max can be used with exact and approximate numeric, character, and
datetime columns. It cannot be used with bit columns. With character
columns, max finds the highest value in the collating sequence. max
ignores null values. max implicitly converts char datatypes to varchar,
unichar datatypes to univarchar, stripping all trailing blanks.

• unichar data is collated according to the default Unicode sort order.

• Adaptive Server goes directly to the end of the index to find the last
row for max when there is an index on the aggregated column, unless:

• The expression not a column

• The column is not the first column of an index

• There is another aggregate in the query

• There is a group by or where clause

Standards SQL92 – Complience level: Transact-SQL extension

Permissions Any user can execute max.

See also Commands – compute Clause, group by and having Clauses, select, where
Clause

Functions – avg, min

min
Description Returns the lowest value in a column.

Syntax min(expression)

CHAPTER 4 Functions: exp – mut_excl_roles

123

Parameters expression
 – is a column name, constant, function, any combination of column
names, constants, and functions connected by arithmetic or bitwise
operators, or a subquery. With aggregates, an expression is usually a
column name. For more information, see “Expressions” on page 179.

Examples select min(price) from titles
where type = "psychology"

7.00

Usage • min, an aggregate function, finds the minimum value in a column.

• For general information about aggregate functions, see “Aggregate
functions” on page 45.

• min can be used with numeric, character, and datetime columns. It
cannot be used with bit columns. With character columns, min finds
the lowest value in the sort sequence. min implicitly converts char
datatypes to varchar, unichar datatypes to univarchar, stripping all
trailing blanks. min ignores null values. distinct is not available, since
it is not meaningful with min.

• unichar data is collated according to the default Unicode sort order.

• Adaptive Server goes directly to the first qualifying row for min when
there is an index on the aggregated column, unless:

• The expression is not a column

• The column is not the first column of an index

• There is another aggregate in the query

• There is a group by clause

Standards SQL92 – Complience level: Transact-SQL extension

Permissions Any user can execute min.

See also Commands – compute Clause, group by and having Clauses, select, where
Clause

Functions – avg, max

mut_excl_roles

124

mut_excl_roles
Description Returns information about the mutual exclusivity between two roles.

Syntax mut_excl_roles (role1, role2 [membership | activation])

Parameters role1
 – is one user-defined role in a mutually exclusive relationship.

role2
 – is the other user-defined role in a mutually exclusive relationship.

level
 – is the level (membership or activation) at which the specified roles
are exclusive.

Examples alter role admin add exclusive membership supervisor
select
mut_excl_roles("admin", "supervisor", "membership")

1

Shows that the admin and supervisor roles are mutually exclusive.

Usage • mut_excl_roles, a system function, returns information about the
mutual exclusivity between two roles. If the System Security Officer
defines role1 as mutually exclusive with role2 or a role directly
contained by role2, mut_excl_roles returns 1. If the roles are not
mutually exclusive, mut_excl_roles returns 0.

• For general information about system functions, see “System
functions” on page 64.

Standards SQL92 – Complience level: Transact-SQL extension

Permissions Any user can execute mut_excl_roles.

See also Commands – alter role, create role, drop role, grant, set, revoke

Functions – proc_role, role_contain, role_id, role_name

System procedures – sp_activeroles, sp_displayroles, sp_role

125

C H A P T E R 5 Functions: object_id – rtrim

object_id
Description Returns the object ID of the specified object.

Syntax object_id(object_name)

Parameters object_name
 – is the name of a database object, such as a table, view, procedure,
trigger, default, or rule. The name can be fully qualified (that is, it can
include the database and owner name). Enclose the object_name in
quotes.

Examples Example 1

select object_id("titles")

208003772

Example 2

select object_id("master..sysobjects")

1

Usage • object_id, a system function, returns the object’s ID. Object IDs are
stored in the id column of sysobjects.

• For general information about system functions, see “System
functions” on page 64.

Standards SQL92 – Complience level: Transact-SQL extension

Permissions Any user can execute object_id.

See also Functions – col_name, db_id, object_name

System procedure – sp_help

object_name

126

object_name
Description Returns the name of the object whose object ID is specified.

Syntax object_name(object_id[, database_id])

Parameters object_id
 – is the object ID of a database object, such as a table, view, procedure,
trigger, default, or rule. Object IDs are stored in the id column of
sysobjects.

database_id
 – is the ID for a database if the object is not in the current database.
Database IDs* are stored in the db_id column of sysdatabases.

Examples Example 1

select object_name(208003772)

titles

Example 2

select object_name(1, 1)

sysobjects

Usage • object_name, a system function, returns the object’s name.

• For general information about system functions, see “System
functions” on page 64.

Standards SQL92 – Complience level: Transact-SQL extension

Permissions Any user can execute object_name.

See also Functions – col_name, db_id, object_id

System procedures – sp_help

patindex
Description Returns the starting position of the first occurrence of a specified pattern.

Syntax patindex("%pattern%", char_expr|uchar_expr [, using
{bytes | characters | chars}])

CHAPTER 5 Functions: object_id – rtrim

127

Parameters pattern
– is a character expression of the char or varchar datatype that may
include any of the pattern-match wildcard characters supported by
Adaptive Server. The % wildcard character must precede and follow
pattern (except when searching for first or last characters). For a
description of the wildcard characters that can be used in pattern, see
“Pattern matching with wildcard characters” on page 195.

char_expr
 – is a character-type column name, variable, or constant expression of
char, varchar, nchar or nvarchar type.

uchar_expr
 – is a character-type column name, variable, or constant expression of
unichar, or univarchar type.

using
 – specifies a format for the starting position.

bytes
 – returns the offset in bytes.

chars
 or characters – returns the offset in characters (the default).

Examples Example 1

select au_id, patindex("%circus%", copy)
from blurbs

au_id
----------- -----------
486-29-1786 0
648-92-1872 0
998-72-3567 38
899-46-2035 31
672-71-3249 0
409-56-7008 0

Selects the author ID and the starting character position of the word
“circus” in the copy column.

Example 2

select au_id, patindex("%circus%", copy,
using chars)

from blurbs

patindex

128

Example 3

select au_id, patindex("%circus%", copy,
using chars)

from blurbs

The same as example 1.

Example 4

select name
from sysobjects
where patindex("sys[a-d]%", name) > 0

name

sysalternates
sysattributes
syscharsets
syscolumns
syscomments
sysconfigures
sysconstraints
syscurconfigs
sysdatabases
sysdepends
sysdevices

Finds all the rows in sysobjects that start with “sys” and whose fourth
character is “a”, “b”, “c”, or “d”.

Usage • patindex, a string function, returns an integer representing the starting
position of the first occurrence of pattern in the specified character
expression, or a zero if pattern is not found.

• patindex can be used on all character data, including text and image
data.

• By default, patindex returns the offset in characters; to return the offset
in bytes (multibyte character strings), specify using bytes.

• Include percent signs before and after pattern. To look for pattern as
the first characters in a column, omit the preceding %. To look for
pattern as the last characters in a column, omit the trailing %.

• If char_expr or uchar_expr is NULL, returns 0.

• If a varchar expression is given as one parameter and a unichar
expression is given as the other, the varchar expression is implicitly
converted to unichar (with possible truncation).

CHAPTER 5 Functions: object_id – rtrim

129

• For general information about string functions, see “String functions”
on page 62.

Standards SQL92 – Complience level: Transact-SQL extension

Permissions Any user can execute patindex.

See also Functions – charindex, substring

pagesize
Description Returns the page size, in bytes, for the specified object.

Syntax pagesize(object_name [, index_name)
or,
pagesize(dbid, object_id [, index_id])

Parameters object_name
- the name of the object you are searching. If you do not specify a fully
qualified object name, the current database is searched.

index_name
 – indicates the name of the index used for the search

dbid
 – the ID of the database specified by object_name.

object_id
 – the ID of the object indicated by object_name .

index_id
- the ID of the index indicated by index_name.

Examples Example 1

select pagesize(title, title_id)
from titles

Selects the pagesize for the title column of the titles table.

Example 2

select pagesize(4,)

Selects the pagesize for the titles table (object_id 224000798) from the
pubs2 database (dbid 4).

Usage • If you do not indicate an index_name, the default is to use the data
level of the table.

pi

130

• If the specified object is not a page size (for example, if the name of
a view is provided), pagesize() returns zero.

• If the specified object does not exist, pagesize() returns NULL.

Standards SQL92 – Complience level: Transact-SQL extension

Permissions Any user can execute pagesize().

pi
Description Returns the constant value 3.1415926535897936.

Syntax pi()

Parameters None

Examples select pi()

3.141593

Usage • pi, a mathematical function, returns the constant value of
3.1415926535897931.

• For general information about mathematical functions, see
“Mathematical functions” on page 60.

Standards SQL92 – Complience level: Transact-SQL extension

Permissions Any user can execute pi.

See also Functions – degrees, radians

power
Description Returns the value that results from raising the specified number to a given

power.

Syntax power(value, power)

Parameters value
– is a numeric value.

CHAPTER 5 Functions: object_id – rtrim

131

power
– is an exact numeric, approximate numeric, or money value.

Examples select power(2, 3)

8

Usage • power, a mathematical function, returns the value of value raised to
the power power. Results are of the same type as value.

For expressions of type numeric or decimal, the results have an internal
precision of 77 and a scale equal to that of the expression.

• For general information about mathematical functions, see
“Mathematical functions” on page 60.

Standards SQL92 – Complience level: Transact-SQL extension

Permissions Any user can execute power.

See also Functions – exp, log, log

proc_role
Description Returns information about whether the user has been granted the specified

role.

Syntax proc_role ("role_name")

Parameters role_name
 – is the name of a system or user-defined role.

Examples Example 1

create procedure sa_check as
if (proc_role("sa_role") > 0)
begin

return(1)
end
print "You are a System Administrator."

Creates a procedure to check if the user is a System Administrator.

Example 2

select proc_role("sso_role")

Checks that the user has been granted the System Security Officer role.

ptn_data_pgs

132

Example 3

select proc_role("oper_role")

Checks that the user has been granted the Operator role.

Usage • proc_role, a system function, checks whether an invoking user has
been granted, and has activated, the specified role.

• proc_role returns 0 if any of the following are true:

• the user has not been granted the specified role

• the user has not been granted a role which contains the specified
role

• the user has been granted, but has not activated, the specified role

• proc_role returns 1 if the invoking user has been granted, and has
activated, the specified role.

• proc_role returns 2 if the invoking user has a currently active role,
which contains the specified role.

• For general information about system functions, see “System
functions” on page 64.

Standards SQL92 – Complience level: Transact-SQL extension

Permissions Any user can execute proc_role.

See also Commands – alter role, create role, drop role, grant, set, revoke

Functions – mut_excl_roles, role_contain, role_id, role_name, show_role

ptn_data_pgs
Description Returns the number of data pages used by a partition.

Syntax ptn_data_pgs(object_id, partition_id)

Parameters object_id
 – is the object ID for a table, stored in the id column of sysobjects,
sysindexes, and syspartitions.

partition_id
 – is the partition number of a table.

CHAPTER 5 Functions: object_id – rtrim

133

Examples select ptn_data_pgs(object_id("salesdetail"), 1)

5

Usage • ptn_data_pgs, a system function, returns the number of data pages in
a partitioned table.

• Use the object_id function to get an object’s ID, and use sp_helpartiton
to list the partitions in a table.

• The data pages returned by ptn_data_pgs may be inaccurate. Use the
update partition statistics, dbcc checktable, dbcc checkdb, or dbcc
checkalloc commands before using ptn_data_pgs to get the most
accurate value.

• For general information about system functions, see “System
functions” on page 64.

Standards SQL92 – Complience level: Transact-SQL extension

Permissions Only the table owner can execute ptn_data_pgs.

See also Commands – update partition statistics, dbcc

Functions – data_pgs, object_id

System procedures – sp_helpartition

radians
Description Returns the size, in radians, of an angle with the specified number of

degrees.

Syntax radians(numeric)

Parameters numeric
 – is any exact numeric (numeric, dec, decimal, tinyint, smallint, or int),
approximate numeric (float, real, or double precision), or money column,
variable, constant expression, or a combination of these.

Examples select radians(2578)

44

Usage • radians, a mathematical function, converts degrees to radians. Results
are of the same type as numeric.

rand

134

For expressions of type numeric or decimal, the results have an
internal precision of 77 and a scale equal to that of the numeric
expression.

When money datatypes are used, internal conversion to float may
cause loss of precision.

• For general information about mathematical functions, see
“Mathematical functions” on page 60.

Standards SQL92 – Complience level: Transact-SQL extension

Permissions Any user can execute radians.

See also Function – degrees

rand
Description Returns a random value between 0 and 1, which is generated using the

specified seed value.

Syntax rand([integer])

Parameters integer
 – is any integer (tinyint, smallint or int) column name, variable, constant
expression, or a combination of these.

Examples Example 1

select rand()

0.395740

Example 2

declare @seed int
select @seed=100
select rand(@seed)

0.000783

Usage • rand, a mathematical function, returns a random float value between
0 and 1, using the optional integer as a seed value.

CHAPTER 5 Functions: object_id – rtrim

135

• The rand function uses the output of a 32-bit pseudo-random integer
generator. The integer is divided by the maximum 32-bit integer to
give a double value between 0.0 and 1.0. The rand function is seeded
randomly at server start-up, so getting the same sequence of random
numbers is unlikely, unless the user first initializes this function with
a constant seed value. The rand function is a global resource. Multiple
users calling the rand function progress along a single stream of
pseudo-random values. If a repeatable series of random numbers is
needed, the user must assure that the function is seeded with the same
value initially and that no other user calls rand while the repeatable
sequence is desired.

• For general information about mathematical functions, see
“Mathematical functions” on page 60.

Standards SQL92 – Complience level: Transact-SQL extension

Permissions Any user can execute rand.

See also Datatypes – Approximate numeric datatypes

replicate
Description Returns a string consisting of the specified expression repeated a given

number of times.

Syntax replicate (char_expr|uchar_expr, integer_expr)

Parameters char_expr
 – is a character-type column name, variable, or constant expression of
char, varchar, nchar or nvarchar type.

uchar_expr
 – is a character-type column name, variable, or constant expression of
unichar or univarchar type.

integer_expr
 – is any integer (tinyint, smallint, or int) column name, variable, or
constant expression.

Examples select replicate("abcd", 3)

abcdabcdabcd

reserved_pgs

136

Usage • replicate, a string function, returns a string with the same datatype as
char_expr, or uchar_expr containing the same expression repeated
the specified number of times or as many times as will fit into a 64K-
space, whichever is less.

• If char_expr or uchar_expr is NULL, returns a single NULL.

• For general information about string functions, see “String functions”
on page 62.

Standards SQL92 – Complience level: Transact-SQL extension

Permissions Any user can execute replicate.

See also Functions – stuff

reserved_pgs
Description Returns the number of pages allocated to the specified table or index, and

reports pages used for internal structures.

Syntax reserved_pgs(object_id, {doampg|ioampg})

Parameters object_id
 – is a numeric expression that is an object ID for a table, view, or other
database object. These are stored in the id column of sysobjects.

doampg | ioampg
 – specifies table (doampg) or index (ioampg).

Examples select reserved_pgs(id, doampg)
from sysindexes where id =

object_id("syslogs")

534

Returns the page count for the syslogs table.

Usage • reserved_pgs, a system function:

• Returns the number of pages allocated to a table or an index

• Reports pages used for internal structures

• Works only on objects in the current database

• For general information about system functions, see “System
functions” on page 64.

CHAPTER 5 Functions: object_id – rtrim

137

Standards SQL92 – Complience level: Transact-SQL extension

Permissions Any user can execute reserved_pgs.

See also Commands – update statistics

Functions – data_pgs

reverse
Description Returns the specified string with characters listed in reverse order.

Syntax reverse(expression|uchar_expr)

Parameters expression
 – is a character or binary-type column name, variable, or constant
expression of char, varchar, nchar, nvarchar, binary, or varbinary type.

uchar_expr
 –is a character or binary-type column name, variable, or constant
expression of unichar or univarchar type.

Examples Example 1

select reverse("abcd")

dcba

Example 2

select reverse(0x12345000)

0x00503412

Usage • reverse, a string function, returns the reverse of expression.

• If expression is NULL, returns NULL.

• Surrogate pairs are treated as indivisible and are not reversed.

• For general information about string functions, see “String functions”
on page 62.

Standards SQL92 – Complience level: Transact-SQL extension

Permissions Any user can execute reverse.

See also Functions – lower, upper

right

138

right
Description The rightmost part of the expression with the specified number of

characters.

Syntax right(expression, integer_expr)

Parameters expression
 – is a character or binary-type column name, variable, or constant
expression of char, varchar, nchar, unichar, nvarchar, univarchar, binary,
or varbinary type.

integer_expr
 – is any integer (tinyint, smallint, or int) column name, variable, or
constant expression.

Examples Example 1

select right("abcde", 3)

cde

Example 2

select right("abcde", 2)

--
de

Example 3

select right("abcde", 6)

abcde

Example 4

select right(0x12345000, 3)

0x345000

Example 5

select right(0x12345000, 2)

0x5000

CHAPTER 5 Functions: object_id – rtrim

139

Example 6

select right(0x12345000, 6)

0x12345000

Usage • right, a string function, returns the specified number of characters
from the rightmost part of the character or binary expression.

• If the specified rightmost part begins with the second surrogate of a
pair (the low surrogate), the return value starts with the next full
character. Therefore, one less character is returned.

• The return value has the same datatype as the character or binary
expression.

• If expression is NULL, returns NULL.

• For general information about string functions, see “String functions”
on page 62.

Standards SQL92 – Complience level: Transact-SQL extension

Permissions Any user can execute right.

See also Functions – rtrim, substring

role_contain
Description Returns 1 if role2 contains role1.

Syntax role_contain("role1", "role2")

Parameters role1
– is the name of a system or user-defined role.

role2
– is the name of another system or user-defined role.

Examples Example 1

select role_contain("intern_role", "doctor_role")

1

role_id

140

Example 2

select role_contain("specialist_role",
"intern_role")

0

Usage • role_contain, a system function, returns 1 if role1 is contained by
role2.

• For more information about contained roles and role hierarchies, see
the System Administration Guide.

• For more information about system functions, see “System functions”
on page 64

Standards SQL92 – Complience level: Transact-SQL extension

Permissions Any user can execute role_contain.

See also Functions – mut_excl_roles, proc_role, role_id, role_name

Commands – alter role

System procedures – sp_activeroles, sp_displayroles, sp_role

role_id
Description Returns the system role ID of the role whose name you specify.

Syntax role_id("role_name")

Parameters role_name
 – is the name of a system or user-defined role. Role names and role IDs
are stored in the syssrvroles system table.

Examples Example 1

select role_id("sa_role")

0

Returns the system role ID of sa_role.

Example 2

select role_id("intern_role")

CHAPTER 5 Functions: object_id – rtrim

141

6

Returns the system role ID of the “intern_role”.

Usage • role_id, a system function, returns the system role ID (srid). System
role IDs are stored in the srid column of the syssrvroles system table.

• If the role_name is not a valid role in the system, Adaptive Server
returns NULL.

• For more information about roles, see the System Administration
Guide.

• For more information about system functions, see “System functions”
on page 64.

Standards SQL92 – Complience level: Transact-SQL extension

Permissions Any user can execute role_id.

See also Functions – mut_excl_roles, proc_role, role_contain, role_name

role_name
Description Returns the name of a role whose system role ID you specify.

Syntax role_name(role_id)

Parameters role_id
 – is the system role ID (srid) of the role. Role names are stored in
syssrvroles.

Examples select role_name(01)

sso_role

Usage • role_name, a system function, returns the role name.

• For more information about system functions, see “System functions”
on page 64.

Standards SQL92 – Complience level: Transact-SQL extension

Permissions Any user can execute role_name.

See also Functions – mut_excl_roles, proc_role, role_contain, role_id

round

142

round
Description Returns the value of the specified number, rounded to a given number of

decimal places.

Syntax round(number, decimal_places)

Parameters number –
is any exact numeric (numeric, dec, decimal, tinyint, smallint, or int),
approximate numeric (float, real, or double precision), or money column,
variable, constant expression, or a combination of these.

decimal_places
 – is the number of decimal places to round to.

Examples Example 1

select round(123.4545, 2)

123.4500

Example 2

select round(123.45, -2)

100.00

Example 3

select round(1.2345E2, 2)

123.450000

Example 4

select round(1.2345E2, -2)

100.000000

Usage • round, a mathematical function, rounds the number so that it has
decimal_places significant digits.

• A positive decimal_places determines the number of significant digits
to the right of the decimal point; a negative decimal_places, the
number of significant digits to the left of the decimal point.

• Results are of the same type as number and, for numeric and decimal
expressions, have an internal precision equal to the precision of the
first argument plus 1 and a scale equal to that of number.

CHAPTER 5 Functions: object_id – rtrim

143

• round always returns a value. If decimal_places is negative and
exceeds the number of significant digits in number, Adaptive Server
returns a result of 0. (This is expressed in the form 0.00, where the
number of zeros to the right of the decimal point is equal to the scale
of numeric.) For example:

select round(55.55, -3)

returns a value of 0.00.

• For general information about mathematical functions, see
“Mathematical functions” on page 60.

Standards SQL92 – Complience level: Transact-SQL extension

Permissions Any user can execute round.

See also Functions – abs, ceiling, floor, sign, str

rowcnt
Description Returns an estimate of the number of rows in the specified table.

Syntax rowcnt(sysindexes.doampg)

Parameters sysindexes.doampg
 – is the row count maintained in sysindexes.

Examples select name, rowcnt(sysindexes.doampg)
from sysindexes
where name in

 (select name from sysobjects
 where type = "U")

name
------------------------------ -----------
roysched 87
salesdetail 116
stores 7
discounts 4
au_pix 0
blurbs 6

Usage • rowcnt, a system function, returns the estimated number of rows in a
table.

rtrim

144

• The value returned by rowcnt can vary unexpectedly when Adaptive
Server reboots and recovers transactions. The value is most accurate
after running one of the following commands:

• dbcc checkalloc

• dbcc checkdb

• dbcc checktable

• update all statistics

• update statistics

• For general information about system functions, see “System
functions” on page 64.

Standards SQL92 – Complience level: Transact-SQL extension

Permissions Any user can execute rowcnt.

See also Catalog stored procedures – sp_statistics

Commands – dbcc, update all statistics, update statistics

Function – data_pgs

System procedures – sp_helpartition, sp_spaceused

rtrim
Description Returns the specified expression, trimmed of trailing blanks.

Syntax rtrim(char_expr|uchar_expr)

Parameters char_expr
 – is a character-type column name, variable, or constant expression of
char, varchar, nchar or nvarchar type.

uchar_expr
 –is a character-type column name, variable, or constant expression of
unichar, or univarchar type.

Examples select rtrim("abcd ")

abcd

Usage • rtrim, a string function, removes trailing blanks.

CHAPTER 5 Functions: object_id – rtrim

145

• For Unicode, a blank is defined as the Unicode value U+0020.

• If char_expr or uchar_expr is NULL, returns NULL.

• Only values equivalent to the space character in the current character
set are removed.

• For general information about string functions, see “String functions”
on page 62.

Standards SQL92 – Complience level: Transact-SQL extension

Permissions Any user can execute rtrim.

See also Functions – ltrim

rtrim

146

147

C H A P T E R 6 Functions: show_role –
valid_user

show_role
Description Shows the login’s currently active system-defined roles.

Syntax show_role()

Parameters None.

Examples Example 1

select show_role()

sa_role sso_role oper_role replication_role

Example 2

if charindex("sa_role", show_role()) >0
begin

print "You have sa_role"
end

Usage • show_role, a system function, returns the login’s current active
system-defined roles, if any (sa_role, sso_role, oper_role, or
replication_role). If the login has no roles, show_role returns NULL.

• When a Database Owner invokes show_role after using setuser,
show_role displays the active roles of the Database Owner, not the
user impersonated with setuser.

• For general information about system functions, see “System
functions” on page 64.

Standards SQL92 – Complience level: Transact-SQL extension

Permissions Any user can execute show_role.

See also Commands – alter role, create role, drop role, grant, set, revoke

Functions – proc_role, role_contain

System procedures – sp_activeroles, sp_displayroles, sp_role

show_sec_services

148

show_sec_services
Description Lists the security services that are active for the session.

Syntax show_sec_services()

Parameters None.

Examples select show_sec_services()

encryption, replay_detection

Shows that the user’s current session is encrypting data and performing
replay detection checks.

Usage • Use show_sec_services to list the security services that are active
during the session.

• If no security services are active, show_sec_services returns NULL.

Standards SQL92 – Complience level: Transact-SQL extension

Permissions Any user can execute show_sec_services.

See also Functions – is_sec_service_on

sign
Description Returns the sign (+1 for positive, 0, or -1 for negative) of the specified

value.

Syntax sign(numeric)

Parameters numeric
 – is any exact numeric (numeric, dec, decimal, tinyint, smallint, or int),
approximate numeric (float, real, or double precision), or money column,
variable, constant expression, or a combination of these.

Examples Example 1

select sign(-123)

-1

Example 2

select sign(0)

CHAPTER 6 Functions: show_role – valid_user

149

0

Example 3

select sign(123)

 1

Usage • sign, a mathematical function, returns the positive (+1), zero (0), or
negative (-1).

• Results are of the same type, and have the same precision and scale,
as the numeric expression.

• For general information about mathematical functions, see
“Mathematical functions” on page 60.

Standards SQL92 – Complience level: Transact-SQL extension

Permissions Any user can execute sign.

See also Functions – abs, ceiling, floor, round

sin
Description Returns the sine of the specified angle (in radians).

Syntax sin(approx_numeric)

Parameters approx_numeric
 – is any approximate numeric (float, real, or double precision) column
name, variable, or constant expression.

Examples select sin(45)

0.850904

Usage • sin, a mathematical function, returns the sine of the specified angle
(measured in radians).

• For general information about mathematical functions, see
“Mathematical functions” on page 60.

Standards SQL92 – Complience level: Transact-SQL extension

Permissions Any user can execute sin.

sortkey

150

See also Functions – cos, degrees, radians

sortkey
Description Generates values that can be used to order results based on collation

behavior, which allows you to work with character collation behaviors
beyond the default set of Latin-character-based dictionary sort orders and
case or accent sensitivity.

Syntax sortkey (char_expression|uchar_expression) [, {collation_name |
collation_ID}])

Parameters char_expression
 –is a character-type column name, variable, or constant expression of
char, varchar, nchar or nvarchar type.

uchar_expression
 – is a character-type column name, variable, or constant expression of
unichar or univarchar type.

collation_name
 – is a quoted string or a character variable that specifies the collation to
use. Table 6-1 shows the valid values.

collation_ID
 is an integer constant or a variable that specifies the collation to use.
Table 6-1 shows the valid values.

Examples Example 1

select * from cust_table where cust_name like “TI%” order by
(sortkey(cust_name, “dict”)

Shows sorting by European language dicitionary order.

Example 2

select *from cust_table where cust name like “TI%” order by (sortkey(cust-
name, “gbpinyin”)

Shows sorting by simplified Chinese phonetic order.

Example 3

Shows sorting by European language dictionary order using the in-line
option.

select *from cust_table where cust_name like”TI%” order by cust_french_sort

CHAPTER 6 Functions: show_role – valid_user

151

Example 4

select * from cust_table where cust_name like “TI%” order by
cust_chinese_sort.

Shows sorting by Simplified Chinese phonetic order using pre-existing
keys.

Usage • sortkey, a system function, generates values that can be used to order
results based on collation behavior. This allows you to work with
character collation behaviors beyond the default set of Latin-
character-based dictionary sort orders and case or accent sensitivity.
The return value is a varbinary datatype value that contains coded
collation information for the input string that is returned from the
sortkey function.

For example, you can store the values returned by sortkey in a column
with the source character string. When you want to retrieve the
character data in the desired order, the select statement only needs to
include an order by clause on the columns that contain the results of
running sortkey.

sortkey guarantees that the values it returns for a given set of collation
criteria work for the binary comparisons that are performed on
varbinary datatypes.

Note sortkey can generate up to 6 bytes of collation information for
each input character. Therefore, the result from using sortkey may
exceed the 255-byte length limit of the varbinary datatype. If this
happens, the result is truncated to fit. Truncation removes result bytes
for each input character until the result string is less than 255 bytes. If
this occurs, a warning message is issued, but the query or transaction
that contained the sortkey function continues to work.

• char_expression or uchar_expression must be composed of
characters that are encoded in the server’s default character set.

• char_expression or uchar_expression can be an empty string. If it is
an empty string:

• sortkey returns a zero-length varbinary value, and

• stores a blank for the empty string.

An empty string has a different collation value than an NULL string
from a database column.

sortkey

152

• If char_expression or uchar_expression is NULL, sortkey returns a
NULL value.

• If a unicode expression has no specified sort order, the unicode default
sort order is used.

• If you do not specify a value for collation_name or collation_ID,
sortkey assumes binary collation.

Collation Tables

There are two types of collation tables you can use to perform multilingual
sorting:

1 A “built-in” collation table created by the sortkey function. This
function exists in all ASE releases after ASE 11.5.1. You can use
either the collation name or the collation ID to specify a built-in table.

2 An external collation table that uses the Unilib library sorting
functions. You must use the collation name to specify an external
table. These*srt files are located at $SYBASE/collate/unicode.

Both of these methods work equally well, but a “built-in” table is tied
to a Sybase ASE database, an external table is not. If you use an ASE
database, a built-in table provides the best performance. both of these
methods can handle any mix of English, European, and Asian
languages.

There are two ways of using sortkey:

1 In-line: This uses sortkey as part of the order by clause and is useful
for retrofitting an existing application and minimizing the changes.
Note however, that this method generates sort keys on-the-fly, and
therefore does not provide optimum performance on large datasets of
over 1000 records.

2 Pre-existing keys: this method calls sortkey whenever a new record
requiring multilingual sorting is added to the table, such as a new
customer name. Shadow columns (binary or varbinary type) must be
set up in the database, preferably in the same table, one for each
desired sort order (e.g. French, Chinese, etc.). When a query requires
output to be sorted, the order by clause uses one of the shadow
columns. This method produces the best performance since keys are
already generated and stored, and are quickly compared only on the
basis of their binary values.

CHAPTER 6 Functions: show_role – valid_user

153

You can view a list of available collation rules. Print out the list by
executing either the stored procedure sp_helpsort, or by querying and
selecting the name, id, and description from syscharsets, (type is between
2003 and 2999.)

• Table 6-1 lists the valid values for collation_name and collation_ID.

Table 6-1: Collation names and IDs

Standards SQL92 – Complience level: Transact-SQL extension

Permissions Any user can execute sortkey.

See also Functions – compare

Description Collation name Collation ID

Binary sort binary 50

Default Unicode multilingual default 0

CP 850 Alternative no accent altnoacc 39

CP 850 Alternative lower case first altdict 45

CP 850 Alternative no case preference altnocsp 46

CP 850 Scandinavian dictionary scandict 47

CP 850 Scandinavian no case preference scannocp 48

GB Pinyin gbpinyin n/a

Latin-1 English, French, German dictionary dict 51

Latin-1 English, French, German no case nocase 52

Latin-1 English, French, German no case preference nocasep 53

Latin-1 English, French, German no accent noaccent 54

Latin-1 Spanish dictionary espdict 55

Latin-1 Spanish no case espnocs 56

Latin-1 Spanish no accent espnoac 57

ISO 8859-5 Cyrillic dictionary cyrdict 63

ISO 8859-5 Russian dictionary rusdict 58

ISO 8859-9 Turkish dictionary turdict 72

Shift-JIS binary order sjisbin 259

Thai dictionary thaidict 1

soundex

154

soundex
Description Returns a 4-character code representing the way an expression sounds.

Syntax soundex(char_expr|uchar_expr)

Parameters char_expr
 – is a character-type column name, variable, or constant expression of
char, varchar, nchar or nvarchar type.

uchar_expr
 –is a character-type column name, variable, or constant expression of
unichar or univarchar type.

Examples select soundex ("smith"), soundex ("smythe")

----- -----
S530 S530

Usage • soundex, a string function, returns a 4-character soundex code for
character strings that are composed of a contiguous sequence of valid
single- or double-byte roman letters.

• The soundex function converts an alpha string to a four-digit code for
use in locating similar-sounding words or names. All vowels are
ignored unless they constitute the first letter of the string.

• If char_expr or uchar_expr is NULL, returns NULL.

• For general information about string functions, see “String functions”
on page 62.

Standards SQL92 – Complience level: Transact-SQL extension

Permissions Any user can execute soundex.

See also Functions – difference

space
Description Returns a string consisting of the specified number of single-byte spaces.

Syntax space(integer_expr)

Parameters integer_expr
 – is any integer (tinyint, smallint, or int) column name, variable, or
constant expression.

CHAPTER 6 Functions: show_role – valid_user

155

Examples select "aaa", space(4), "bbb"

--- ---- ---
aaa bbb

Usage • space, a string function, returns a string with the indicated number of
single-byte spaces.

• For general information about string functions, see “String functions”
on page 62.

Standards SQL92 – Complience level: Transact-SQL extension

Permissions Any user can execute space.

See also Functions – isnull, rtrim

sqrt
Description Returns the square root of the specified number.

Syntax sqrt(approx_numeric)

Parameters approx_numeric
 – is any approximate numeric (float, real, or double precision) column
name, variable, or constant expression that evaluates to a positive
number.

Examples select sqrt(4)

2.000000

Usage • sqrt, a mathematical function, returns the square root of the specified
value.

• If you attempt to select the square root of a negative number, Adaptive
Server returns the following error message:

Domain error occurred.

• For general information about mathematical functions, see
“Mathematical functions” on page 60.

Standards SQL92 – Complience level: Transact-SQL extension

Permissions Any user can execute sqrt.

See also Functions – power

str

156

str
Description Returns the character equivalent of the specified number.

Syntax str(approx_numeric [, length [, decimal]])

Parameters approx_numeric
– is any approximate numeric (float, real, or double precision) column
name, variable, or constant expression.

length
– sets the number of characters to be returned (including the decimal
point, all digits to the right and left of the decimal point, and blanks).
The default is 10.

decimal
 – sets the number of decimal digits to be returned. The default is 0.

Examples Example 1

select str(1234.7, 4)

1235

Example 2

select str(-12345, 6)

-12345

Example 3

select str(123.45, 5, 2)

123.5

Usage • str, a string function, returns a character representation of the floating
point number. For general information about string functions, see
“String functions” on page 62.

• length and decimal are optional. If given, they must be nonnegative.
str rounds the decimal portion of the number so that the results fit
within the specified length. The length should be long enough to
accommodate the decimal point and, if negative, the number’s sign.
The decimal portion of the result is rounded to fit within the specified
length. If the integer portion of the number does not fit within the
length, however, str returns a row of asterisks of the specified length.
For example:

CHAPTER 6 Functions: show_role – valid_user

157

select str(123.456, 2, 4)
--
**

A short approx_numeric is right justified in the specified length, and
a long approx_numeric is truncated to the specified number of
decimal places.

• If approx_numeric is NULL, returns NULL.

Standards SQL92 – Complience level: Transact-SQL extension

Permissions Any user can execute str.

See also Functions – abs, ceiling, floor, round, sign

stuff
Description Returns the string formed by deleting a specified number of characters

from one string and replacing them with another string.

Syntax stuff(char_expr1|uchar_expr1, start, length, char_expr2|uchar_expr2)

Parameters char_expr1
 – is a character-type column name, variable, or constant expression of
char, varchar, nchar or nvarchar type.

uchar_expr1
 –is a character-type column name, variable, or constant expression of
unichar or univarchar type.

start
– specifies the character position at which to begin deleting characters.

length
 – specifies the number of characters to delete.

char_expr2
 – is another character-type column name, variable, or constant
expression of char, varchar, nchar or nvarchar type

uchar_expr2
 – is another character-type column name, variable, or constant
expression of unichar or univarchar type.

stuff

158

Examples Example 1

select stuff("abc", 2, 3, "xyz")

axyz

Example 2

select stuff("abcdef", 2, 3, null)

go

aef

Example 3

select stuff("abcdef", 2, 3, "")

a ef

Usage • stuff, a string function, deletes length characters from char_expr1 or
uchar_expr1 at start, then inserts char_expr2 or uchar_expr2 into
char_expr1 or uchar_expr2 at start. For general information about
string functions, see “String functions” on page 62.

• If the start position or the length is negative, a NULL string is
returned. If the start position is longer than expr1, a NULL string is
returned. If the length to be deleted is longer than expr1, expr1 is
deleted through its last character (see example 1).

• If the start position falls in the middle of a surrogate pair, start is
adjusted to be one less. If the start length position falls in the middle
of a surrogate pair, length is adjusted to be one less.

• To use stuff to delete a character, replace expr2 with “NULL” rather
than with empty quotation marks. Using ‘‘ ‘’ to specify a null
character replaces it with a space (see examples 2 and 3).

• If char_expr1 or uchar_expr1 is NULL, returns NULL. If
char_expr1 or uchar_expr1 is a string value and char_expr2 or
uchar_expr2 is NULL, replaces the deleted characters with nothing.

• If a varchar expression is given as one parameter and a unichar
expression as the other, the varchar expression is implicitly converted
to unichar (with possible truncation).

Standards SQL92 – Complience level: Transact-SQL extension

CHAPTER 6 Functions: show_role – valid_user

159

Permissions Any user can execute stuff.

See also Functions – replicate, substring

substring
Description Returns the string formed by extracting the specified number of characters

from another string.

Syntax substring(expression, start, length)

Parameters expression
 – is a binary or character column name, variable or constant expression.
Can be char, nchar, unichar, varchar, univarchar, or nvarchar data, binary
or varbinary.

start
– specifies the character position at which the substring begins.

length
 – specifies the number of characters in the substring.

Examples Example 1

select au_lname, substring(au_fname, 1, 1)
from authors

Displays the last name and first initial of each author, for example,
“Bennet A.”

Example 2

select substring(upper(au_lname), 1, 3)
from authors

Converts the author’s last name to uppercase, then displays the first three
characters.

Example 3

select substring((pub_id + title_id), 1, 6)
from titles

Concatenates pub_id and title_id, then displays the first six characters of the
resulting string.

Example 4

select substring(xactid,5,2)

sum

160

from syslogs

Extracts the lower four digits from a binary field, where each position
represents two binary digits.

Usage • substring, a string function, returns part of a character or binary string.
For general information about string functions, see “String functions”
on page 62.

• If any of the arguments to substring are NULL, substring returns
NULL.

• If the start position from the beginning of uchar_expr1 falls in the
middle of a surrogate pair, start is adjusted to one less. If the start
length position from the beginning of uchar_expr1 falls in the middle
of a surrogate pair, length is adjusted to one less.

Standards SQL92 – Complience level: Transact-SQL extension

Permissions Any user can execute substring.

See also Functions – charindex, patindex, stuff

sum
Description Returns the total of the values.

Syntax sum([all | distinct] expression)

Parameters all
 – applies sum to all values. all is the default.

distinct
 – eliminates duplicate values before sum is applied. distinct is optional.

expression
 – is a column name, constant, function, any combination of column
names, constants, and functions connected by arithmetic or bitwise
operators, or a subquery. With aggregates, an expression is usually a
column name. For more information, see “Expressions” on page 179.

Examples Example 1

select avg(advance), sum(total_sales)
from titles
where type = "business"

CHAPTER 6 Functions: show_role – valid_user

161

Calculates the average advance and the sum of total sales for all business
books. Each of these aggregate functions produces a single summary value
for all of the retrieved rows.

Example 2

select type, avg(advance), sum(total_sales)
from titles
group by type

Used with a group by clause, the aggregate functions produce single values
for each group, rather than for the whole table. This statement produces
summary values for each type of book.

Example 3

select pub_id, sum(advance), avg(price)
from titles
group by pub_id
having sum(advance) > $25000 and avg(price) > $15

Groups the titles table by publishers, and includes only those groups of
publishers who have paid more than $25,000 in total advances and whose
books average more than $15 in price.

Usage • sum, an aggregate function, finds the sum of all the values in a
column. sum can only be used on numeric (integer, floating point, or
money) datatypes. Null values are ignored in calculating sums.

• For general information about aggregate functions, see “Aggregate
functions” on page 45.

• When you sum integer data, Adaptive Server treats the result as an int
value, even if the datatype of the column is smallint or tinyint. To avoid
overflow errors in DB-Library programs, declare all variables for
results of averages or sums as type int.

• You cannot use sum with the binary datatypes.

• Since this function only defines numeric types, use with Unicode
expressions generates an error.

Standards SQL92 – Complience level: Transact-SQL extension

Permissions Any user can execute sum.

See also Commands – compute Clause, group by and having Clauses, select, where
Clause

Functions – count, max, min

suser_id

162

suser_id
Description Returns the server user’s ID number from the syslogins table.

Syntax suser_id([server_user_name])

Parameters server_user_name
 – is an Adaptive Server login name.

Examples Example 1

select suser_id()

1

Example 2

select suser_id("margaret")

5

Usage • suser_id, a system function, returns the server user’s ID number from
syslogins. For general information about system functions, see
“System functions” on page 64.

• To find the user’s ID in a specific database from the sysusers table,
use the user_id system function.

• If no server_user_name is supplied, suser_id returns the server ID of
the current user.

Standards SQL92 – Complience level: Transact-SQL extension

Permissions Any user can execute suser_id.

See also Functions – suser_name, user_id

suser_name
Description Returns the name of the current server user or the user whose server ID is

specified.

Syntax suser_name([server_user_id])

Parameters server_user_name
 – is an Adaptive Server user ID.

CHAPTER 6 Functions: show_role – valid_user

163

Examples Example 1

select suser_name()

sa

Example 2

select suser_name(4)

margaret

Usage • suser_name, a system function, returns the server user’s name. Server
user IDs are stored in syslogins. If no server_user_id is supplied,
suser_name returns the name of the current user.

• For general information about system functions, see “System
functions” on page 64.

Standards SQL92 – Complience level: Transact-SQL extension

Permissions Any user can execute suser_name.

See also Functions – suser_id, user_name

syb_sendmsg
Description Sends a message to a User Datagram Protocol (UDP) port.

Syntax syb_sendmsg ip_address, port_number, message

Parameters ip_address
 – is the IP address of the machine where the UDP application is
running.

port_number
 – is the port number of the UDP port.

message
 – is the message to send. It can be up to 255 characters in length.

Examples Example 1

select syb_sendmsg("120.10.20.5", 3456, "Hello")

Sends the message “Hello” to port 3456 at IP address 120.10.20.5.

tan

164

Example 2

declare @msg varchar(255)
select @msg = "Message to send"
select syb_sendmsg (ip_address, portnum, @msg)
from sendports
where username = user_name()

Reads the IP address and port number from a user table, and uses a variable
for the message to be sent.

Usage • syb_sendmsg is not supported on Windows NT.

• To enable the use of UDP messaging, a System Security Officer must
set the configuration parameter allow sendmsg to 1.

• No security checks are performed with syb_sendmsg. Sybase strongly
recommends caution when using syb_sendmsg to send sensitive
information across the network. By enabling this functionality, the
user accepts any security problems which result from its use.

• For a sample C program that creates a UDP port, see sp_sendmsg.

Standards SQL92 – Complience level: Transact-SQL extension

Permissions Any user can execute syb_sendmsg.

See also System procedure – sp_sendmsg

tan
Description Returns the tangent of the specified angle (in radians).

Syntax tan(angle)

Parameters angle
 – is the size of the angle in radians, expressed as a column name,
variable, or expression of type float, real, double precision, or any
datatype that can be implicitly converted to one of these types.

Examples select tan(60)

0.320040

Usage • tan, a mathematical function, returns the tangent of the specified angle
(measured in radians).

CHAPTER 6 Functions: show_role – valid_user

165

• For general information about mathematical functions, see
“Mathematical functions” on page 60.

Standards SQL92 – Complience level: Transact-SQL extension

Permissions Any user can execute tan.

See also Functions – atan, atn2, degrees, radians

textptr
Description Returns a pointer to the first page of a text or image column.

Syntax textptr(column_name)

Parameters column_name
 – is the name of a text column.

Examples Example 1

declare @val binary(16)
select @val = textptr(copy) from blurbs
where au_id = "486-29-1786"
readtext blurbs.copy @val 1 5

This example uses the textptr function to locate the text column, copy,
associated with au_id 486-29-1786 in the author’s blurbs table. The text
pointer is put into a local variable @val and supplied as a parameter to the
readtext command, which returns 5 bytes, starting at the second byte
(offset of 1).

Example 2

select au_id, textptr(copy) from blurbs

Selects the title_id column and the 16-byte text pointer of the copy column
from the blurbs table.

Usage • textptr, a text and image function, returns the text pointer value, a 16-
byte varbinary value.

• If a text or an image column has not been initialized by a non-null
insert or by any update statement, textptr returns a NULL pointer. Use
textvalid to check whether a text pointer exists. You cannot use
writetext or readtext without a valid text pointer.

textvalid

166

• For general information about text and image functions, see “Text and
image functions” on page 65.

Note Trailing f in varbinary values are truncated when the values are
stored in tables. If you are storing text pointer values in a table, use
binary as the datatype for the column.

Standards SQL92 – Complience level: Transact-SQL extension

Permissions Any user can execute textptr.

See also Datatypes – text and image datatypes

Functions – textvalid

textvalid
Description Returns 1 if the pointer to the specified text column is valid; 0 if it is not.

Syntax textvalid("table_name.column_name", textpointer)

Parameters “table_name.column_name”
 – is the name of a table and its text column.

textpointer
 – is a text pointer value.

Examples select textvalid ("texttest.blurb", textptr(blurb))
from texttest

Reports whether a valid text pointer exists for each value in the blurb
column of the texttest table.

Usage • textvalid, a text and image function, checks that a given text pointer is
valid. Returns 1 if the pointer is valid or 0 if it is not.

• The identifier for a text or an image column must include the table
name.

• For general information about text and image functions, see “Text and
image functions” on page 65.

Standards SQL92 – Complience level: Transact-SQL extension

Permissions Any user can execute textvalid.

CHAPTER 6 Functions: show_role – valid_user

167

See also Datatypes – text and image datatypes

Functions – textptr

to_unichar
Description Returns a unichar expression having the value of the integer expression.

Syntax to_unichar (integer_expr)

Parameters integer_expr
– is any integer (tinyint, smallint, or int) column name, variable, or
constant expression.

Usage • to_unichar, a string function, converts a Unicode integer value to a
Unicode character value.

• If a unichar expression refers to only half of a surrogate pair, an error
message appears and the operation is aborted.

• If a integer_expr is NULL, returns NULL.

• For general information about string functions, see “String functions”
on page 62.

Standards SQL92 – Complience level: Transact-SQL extension

Permissions Any user can execute to_unichar.

See also Datatypes – text and image datatypes

Functions – char

tsequal
Description Compares timestamp values to prevent update on a row that has been

modified since it was selected for browsing.

Syntax tsequal(browsed_row_timestamp, stored_row_timestamp)

Parameters browsed_row_timestamp
 – is the timestamp column of the browsed row.

tsequal

168

stored_row_timestamp
 – is the timestamp column of the stored row.

Examples update publishers
set city = "Springfield"
where pub_id = "0736"
and tsequal(timestamp, 0x0001000000002ea8)

Retrieves the timestamp column from the current version of the publishers
table and compares it to the value in the timestamp column that has been
saved. If the values in the two timestamp columns are equal, updates the
row. If the values are not equal, returns an error message.

Usage • tsequal, a system function, compares the timestamp column values to
prevent an update on a row that has been modified since it was
selected for browsing. For general information about system
functions, see “System functions” on page 64.

• tsequal allows you to use browse mode without calling the dbqual
function in DB-Library. Browse mode supports the ability to perform
updates while viewing data. It is used in front-end applications using
Open Client and a host programming language. A table can be
browsed if its rows have been timestamped.

• To browse a table in a front-end application, append the for browse
keywords to the end of the select statement sent to Adaptive Server.
For example:

Start of select statement in an Open Client application
...

for browse

Completion of the Open Client application routine

• The tsequal function should not be used in the where clause of a select
statement, only in the where clause of insert and update statements
where the rest of the where clause matches a single unique row.

If a timestamp column is used as a search clause, it should be
compared like a regular varbinary column; that is, timestamp1 =
timestamp2.

Timestamping a new table for browsing

• When creating a new table for browsing, include a column named
timestamp in the table definition. The column is automatically
assigned a datatype of timestamp; you do not have to specify its
datatype. For example:

CHAPTER 6 Functions: show_role – valid_user

169

create table newtable(col1 int, timestamp,
 col3 char(7))

Whenever you insert or update a row, Adaptive Server timestamps it
by automatically assigning a unique varbinary value to the timestamp
column.

Timestamping an existing table

• To prepare an existing table for browsing, add a column named
timestamp with alter table. For example:

alter table oldtable add timestamp

adds a timestamp column with a NULL value to each existing row. To
generate a timestamp, update each existing row without specifying
new column values. For example:

update oldtable
set col1 = col1

Standards SQL92 – Complience level: Transact-SQL extension

Permissions Any user can execute tsequal.

See also Datatypes – Timestamp datatype

uhighsurr
Description Returns 1 if the Unicode value at position start is the high half of a

surrogate pair (which should appear first in the pair). Returns 0 otherwise.

Syntax uhighsurr(uchar_expr,start)

Parameters uchar_expr
–is a character-type column name, variable, or constant expression of
unichar, or univarchar type.

start
– specifies the character position to investigate.

Usage • uhighsurr, a string function, allows you to write explicit code for
surrogate handling. Specifically, if a substring starts on a Unicode
character where uhighsurr() is true, you need to extract a substring of
at least 2 Unicode values. (substr will not extract half of a surrogate
pair.)

• If uchar_expr is NULL, returns NULL.

ulowsurr

170

• For general information about string functions, see “String functions”
on page 62.

Standards SQL92 – Complience level: Transact-SQL extension

Permissions Any user can execute uhighsurr.

See also Functions – ulowsurr

ulowsurr
Description Returns 1 if the Unicode value at position start is the low half of a

surrogate pair (which should appear second in the pair). Returns 0
otherwise.

Syntax ulowsurr(uchar_expr,start)

Parameters uchar_expr
–is a character-type column name, variable, or constant expression of
unichar, or univarchar type.

start
– specifies the character position to investigate.

Usage • ulowsurr, a string function, allows you to write explicit code around
adjustments performed by substr(), stuff(), and right (). Specifically, if
a substring ends on a Unicode value where ulowsurr() is true, the user
knows to extract a substring of 1 less characters (or 1 more). substr ()
does not extract a string that contains an unmatched surrogate pair.

• If uchar_expr is NULL, returns NULL.

• For general information about string functions, see “String functions”
on page 62.

Standards SQL92 – Complience level: Transact-SQL extension

Permissions Any user can execute ulowsurr.

See also Functions – uhighsurr

CHAPTER 6 Functions: show_role – valid_user

171

upper
Description Returns the uppercase equivalent of the specified string.

Syntax upper(char_expr)

Parameters char_expr
 – is a character-type column name, variable, or constant expression of
char, unichar, varchar, nchar, nvarchar or univarchar type.

Examples select upper("abcd")

ABCD

Usage • upper, a string function, converts lowercase to uppercase, returning a
character value.

• If char_expr or uchar_expr is NULL, returns NULL.

• Characters that have no upper-case equivalent are left unmodified.

• If a unichar expression is created containing only half of a surrogate
pair, an error message appears and the operation is aborted.

• For general information about string functions, see “String functions”
on page 62.

Standards SQL92 – Complience level: Transact-SQL extension

Permissions Any user can execute upper.

See also Functions – lower

uscalar
Description Returns the Unicode scalar value for the first Unicode character in an

expression..

Syntax uscalar(uchar_expr)

Parameters uchar_expr
–is a character-type column name, variable, or constant expression of
unichar, or univarchar type.

Examples

Usage • uscalar, a string function, returns the Unicode value for the first
Unicode character in an expression,.

used_pgs

172

• If uchar_expr is NULL, returns NULL.

• If uscalar is called on a uchar_expr containing an unmatched
surrogate half, and error occurs and the operation is aborted.

• For general information about string functions, see “String functions”
on page 62.

Standards SQL92 – Complience level: Transact-SQL extension

Permissions Any user can execute uscalar.

See also Functions – ascii

used_pgs
Description Returns the number of pages used by a table or index. For an all-pages-

locked table with a clustered index, it returns the sum of the table and
index pages.

Syntax used_pgs(object_id, doampg, ioampg)

Parameters object_id
 – is the object ID of the table for which you want to see the used pages.
To see the pages used by an index, specify the object ID of the table to
which the index belongs.

doampg
– is the page number for the object allocation map of a table or clustered
index, stored in the doampg column of sysindexes.

ioampg
– is the page number for the allocation map of a nonclustered index,
stored in the ioampg column of sysindexes.

Examples Example 1

select name, id, indid, doampg, ioampg
from sysindexes where id = object_id("titles")

name id indid doampg ioampg
------------- ----------- ------ -------- -------
titleidind 208003772 1 560 552
titleind 208003772 2 0 456

select used_pgs(208003772, 560, 552)

CHAPTER 6 Functions: show_role – valid_user

173

6

Returns the number of pages used by the data and clustered index of the
titles table.

Example 2

select name, id, indid, doampg, ioampg
from sysindexes where id = object_id("stores")

name id indid doampg ioampg
------------- ----------- ------ -------- -------
stores 240003886 0 464 0

select used_pgs(240003886, 464, 0)

2

Returns the number of pages used by the stores table, which has no index.

Usage • used_pgs, a system function, returns:

• For all-pages-locked tables with a clustered index, the sum of the
table and index pages

• For data-only-locked tables and tables with no clustered index,
the number of used pages in the table

• For clustered and nonclustered indexes on data-only-locked
tables, the number of pages in the index

• In the examples, indid 0 indicates a table; indid 1 indicates a clustered
index; an indid of 2–250 is a nonclustered index; and an indid of 255
is text or image data.

• used_pgs only works on objects in the current database.

• Each table and each index on a table has an object allocation map
(OAM), which contains information about the number of pages
allocated to and used by an object. This information is updated by
most Adaptive Server processes when pages are allocated or
deallocated. The sp_spaceused system procedure reads these values
to provide quick space estimates. Some dbcc commands update these
values while they perform consistency checks.

• For general information about system functions, see “System
functions” on page 64.

Standards SQL92 – Complience level: Transact-SQL extension

user

174

Permissions Any user can execute used_pgs.

See also Functions – data_pgs, object_id

user
Description Returns the name of the current user.

Syntax user

Parameters None.

Examples select user

dbo

Usage • user, a system function, returns the user’s name.

• If the sa_role is active, you are automatically the Database Owner in
any database you are using. Inside a database, the user name of the
Database Owner is always “dbo”.

• For general information about system functions, see “System
functions” on page 64.

Standards SQL92 – Complience level: Transact-SQL extension

Permissions Any user can execute user.

See also Functions – user_name

user_id
Description Returns the ID number of the specified user or of the current user in the

database.

Syntax user_id([user_name])

Parameters user_name
 – is the name of the user.

CHAPTER 6 Functions: show_role – valid_user

175

Examples Example 1

select user_id()

1

Example 2

select user_id("margaret")

4

Usage • user_id, a system function, returns the user’s ID number. For general
information about system functions, see “System functions” on page
64.

• user_id reports the number from sysusers in the current database. If
no user_name is supplied, user_id returns the ID of the current user.
To find the server user ID, which is the same number in every
database on Adaptive Server, use suser_id.

• Inside a database, the “guest” user ID is always 2.

• Inside a database, the user_id of the Database Owner is always 1. If
you have the sa_role active, you are automatically the Database
Owner in any database you are using. To return to your actual user ID,
use set sa_role off before executing user_id. If you are not a valid user
in the database, Adaptive Server returns an error when you use set
sa_role off.

Standards SQL92 – Complience level: Transact-SQL extension

Permissions You must System Administrator or System Security Officer to use this
function on a user_name other than your own.

See also Commands – setuser

Functions – suser_id, user_name

user_name
Description Returns the name within the database of the specified user or of the current

user.

Syntax user_name([user_id])

valid_name

176

Parameters user_id
 – is the ID of a user.

Examples Example 1

select user_name()

dbo

Example 2

select user_name(4)

margaret

Usage • user_name, a system function, returns the user’s name, based on the
user’s ID in the current database. For general information about
system functions, see “System functions” on page 64.

• If no user_id is supplied, user_name returns the name of the current
user.

• If the sa_role is active, you are automatically the Database Owner in
any database you are using. Inside a database, the user_name of the
Database Owner is always “dbo”.

Standards SQL92 – Complience level: Transact-SQL extension

Permissions You must be a System Administrator or System Security Officer to use this
function on a user_id other than your own.

See also Functions – suser_name, user_id

valid_name
Description Returns 0 if the specified string is not a valid identifier or a number other

than 0 if the string is a valid identifier.

Syntax valid_name(character_expression)

Parameters character_expression
 – is a character-type column name, variable, or constant expression of
char, varchar, nchar or nvarchar type. Constant expressions must be
enclosed in quotation marks.

Examples create procedure chkname

CHAPTER 6 Functions: show_role – valid_user

177

@name varchar(30)
as

if valid_name(@name) = 0
print "name not valid"

Creates a procedure to verify that identifiers are valid.

Usage • valid_name, a system function, returns 0 if the character_ expression
is not a valid identifier (illegal characters, more than 30 bytes long, or
a reserved word), or a number other than 0 if it is a valid identifier.

• Adaptive Server identifiers can be a maximum of 30 bytes in length,
whether single-byte or multibyte characters are used. The first
character of an identifier must be either an alphabetic character, as
defined in the current character set, or the underscore (_) character.
Temporary table names, which begin with the pound sign (#), and
local variable names, which begin with the at sign (@), are exceptions
to this rule. valid_name returns 0 for identifiers that begin with the
pound sign (#) and the at sign (@).

• For general information about system functions, see “System
functions” on page 64.

Standards SQL92 – Complience level: Transact-SQL extension

Permissions Any user can execute valid_name.

See also System procedure – sp_checkreswords

valid_user
Description Returns 1 if the specified ID is a valid user or alias in at least one database

on this Adaptive Server.

Syntax valid_user(server_user_id)

Parameters server_user_id
 – is a server user ID. Server user IDs are stored in the suid column of
syslogins.

Examples select valid_user(4)

1

Usage • valid_user, a system function, returns 1 if the specified ID is a valid
user or alias in at least one database on this Adaptive Server.

valid_user

178

• For general information about system functions, see “System
functions” on page 64.

Standards SQL92 – Complience level: Transact-SQL extension

Permissions You must be a System Administrator or a System Security Officer to use
this function on a server_user_id other than your own.

See also System procedures – sp_addlogin, sp_adduser

179

C H A P T E R 7 Expressions, Identifiers, and
Wildcard Characters

This chapter describes Transact-SQL expressions, valid identifiers, and
wildcard characters.

Expressions
An expression is a combination of one or more constants, literals,
functions, column identifiers and/or variables, separated by operators, that
returns a single value. Expressions can be of several types, including
arithmetic, relational, logical (or Boolean), and character string. In some
Transact-SQL clauses, a subquery can be used in an expression. A case
expression can be used in an expression.

Table 7-1 lists the types of expressions that are used in Adaptive Server
syntax statements.

Table 7-1: Types of expressions used in syntax statements

Usage Definition

expression Can include constants, literals, functions, column identifiers,
variables, or parameters

logical expression An expression that returns TRUE, FALSE, or UNKNOWN

constant expression An expression that always returns the same value, such as “5+3” or
“ABCDE”

float_expr Any floating-point expression or an expression that implicitly
converts to a floating value

integer_expr Any integer expression or an expression that implicitly converts to an
integer value

numeric_expr Any numeric expression that returns a single value

char_expr Any expression that returns a single character-type value

binary_expression An expression that returns a single binary or varbinary value

Expressions

180

Arithmetic and character expressions
The general pattern for arithmetic and character expressions is:

{constant | column_name | function | (subquery)
| (case_expression)}

[{arithmetic_operator | bitwise_operator |
string_operator | comparison_operator }

{constant | column_name | function | (subquery)
| case_expression}]...

Relational and logical expressions
A logical expression or relational expression returns TRUE, FALSE, or
UNKNOWN. The general patterns are:

expression comparison_operator [any | all] expression

expression [not] in expression

[not]exists expression

expression [not] between expression and expression

expression [not] like "match_string"
[escape "escape_character "]

not expression like "match_string"
[escape "escape_character "]

expression is [not] null

not logical_expression

logical_expression {and | or} logical_expression

Operator precedence
Operators have the following precedence levels, where 1 is the highest
level and 6 is the lowest:

1 unary (single argument) - + ~

2 * / %

3 binary (two argument) + - & | ^

4 not

5 and

6 or

CHAPTER 7 Expressions, Identifiers, and Wildcard Characters

181

When all operators in an expression are at the same level, the order of
execution is left to right. You can change the order of execution with
parentheses—the most deeply nested expression is processed first.

Arithmetic operators
Adaptive Server uses the following arithmetic operators:

Table 7-2: Arithmetic operators

Addition, subtraction, division, and multiplication can be used on exact
numeric, approximate numeric, and money type columns.

The modulo operator cannot be used on smallmoney, money, float or real
columns. Modulo finds the integer remainder after a division involving
two whole numbers. For example, 21 % 11 = 10 because 21 divided by 11
equals 1 with a remainder of 10.

When you perform arithmetic operations on mixed datatypes, for example
float and int, Adaptive Server follows specific rules for determining the
type of the result. For more information, see Chapter 1, “System and User-
Defined Datatypes.”

Bitwise operators
The bitwise operators are a Transact-SQL extension for use with integer
type data. These operators convert each integer operand into its binary
representation, then evaluate the operands column by column. A value of
1 corresponds to true; a value of 0 corresponds to false.

Table 7-3 summarizes the results for operands of 0 and 1. If either operand
is NULL, the bitwise operator returns NULL:

Operator Meaning

 + Addition

 – Subtraction

 * Multiplication

 / Division

 % Modulo (Transact-SQL extension)

Expressions

182

Table 7-3: Truth tables for bitwise operations

The examples in Table 7-4 use two tinyint arguments, A = 170
(10101010 in binary form) and B = 75 (01001011 in binary form).

Table 7-4: Examples of bitwise operations

& (and) 1 0

1 1 0

0 0 0

 | (or) 1 0

1 1 1

0 1 0

^ (exclusive or) 1 0

1 0 1

0 1 0

~ (not)

1 FALSE

0 0

Operation Binary Form Result Explanation

(A & B) 10101010
01001011

00001010

10 Result column equals 1 if both A and B are
1. Otherwise, result column equals 0.

(A | B) 10101010
01001011

11101011

235 Result column equals 1 if either A or B, or
both, is 1. Otherwise, result column equals 0

(A ^ B) 10101010
01001011

11100001

225 Result column equals 1 if either A or B, but
not both, is 1

(~A) 10101010

01010101

85 All 1’s are changed to 0’s and all
0’s to 1’s

CHAPTER 7 Expressions, Identifiers, and Wildcard Characters

183

String concatenation operator
The string operator + can be used to concatenate two or more character or
binary expressions. For example:

select Name = (au_lname + ", " + au_fname)
from authors

Displays author names under the column heading Name in last-name
first-name order, with a comma after the last name; for example,
“Bennett, Abraham.”

select "abc" + "" + "def"

Returns the string “abc def”. The empty string is interpreted as a
single space in all char, varchar, unichar, nchar, nvarchar, and text
concatenation, and in varchar and univarchar insert and assignment
statements.

When concatenating non-character, non-binary expressions, always use
convert:

select "The date is " +
 convert(varchar(12), getdate())

A string concatenated with NULL evaluates to the value of the string. This
is an exception to the SQL standard, which states that a string
concatenated with a NULL should evaluate to NULL.

Comparison operators
Adaptive Server uses the comparison operators listed in Table 7-5:

Expressions

184

Table 7-5: Comparison operators

In comparing character data, < means closer to the beginning of the
server’s sort order and > means closer to the end of the sort order.
Uppercase and lowercase letters are equal in a case-insensitive sort order.
Use sp_helpsort to see the sort order for your Adaptive Server. Trailing
blanks are ignored for comparison purposes. So, for example, “Dirk” is the
same as “Dirk ”.

In comparing dates, < means earlier and > means later.

Put single or double quotes around all character and datetime data used
with a comparison operator:

= "Bennet"
> "May 22 1947"

Nonstandard operators
The following operators are Transact-SQL extensions:

• Modulo operator: %

• Negative comparison operators: !>, !<, !=

• Bitwise operators: ~, ^, |, &

• Join operators: *= and =*

Operator Meaning

= Equal to

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

<> Not equal to

!= Not equal to (Transact-SQL extension)

!> Not greater than (Transact-SQL extension)

!< Not less than (Transact-SQL extension)

CHAPTER 7 Expressions, Identifiers, and Wildcard Characters

185

Using any, all and in
any is used with <, >, or = and a subquery. It returns results when any value
retrieved in the subquery matches the value in the where or having clause
of the outer statement. For more information, see the Transact-SQL User’s
Guide.

all is used with < or > and a subquery. It returns results when all values
retrieved in the subquery are less than (<) or greater than (>) the value in
the where or having clause of the outer statement. For more information,
see the Transact-SQL User’s Guide.

in returns results when any value returned by the second expression
matches the value in the first expression. The second expression must be
a subquery or a list of values enclosed in parentheses. in is equivalent to =
any.For more information, see where Clause.

Negating and testing
not negates the meaning of a keyword or logical expression.

Use exists, followed by a subquery, to test for the existence of a particular
result.

Ranges
between is the range-start keyword; and is the range-end keyword. The
range:

 where column1 between x and y

 is inclusive.

The range:

 where column1 > x and column1 < y

is not inclusive.

Using nulls in expressions
Use is null or is not null in queries on columns defined to allow null values.

Expressions

186

An expression with a bitwise or arithmetic operator evaluates to NULL if
any of the operands are null. For example:

1 + column1

evaluates to NULL if column1 is NULL.

Comparisons that return TRUE

In general, the result of comparing null values is UNKNOWN, since it is
not possible to determine whether NULL is equal (or not equal) to a given
value or to another NULL. However, the following cases return TRUE
when expression is any column, variable or literal, or combination of
these, which evaluates as NULL:

• expression is null

• expression = null

• expression = @x, where @x is a variable or parameter containing
NULL. This exception facilitates writing stored procedures with null
default parameters.

• expression != n, where n is a literal that does not contain NULL, and
expression evaluates to NULL.

The negative versions of these expressions return TRUE when the
expression does not evaluate to NULL:

• expression is not null

• expression != null

• expression != @x

Note that the far right side of these exceptions is a literal null, or a variable
or parameter containing NULL. If the far right side of the comparison is
an expression (such as @nullvar + 1), the entire expression evaluates to
NULL.

Following these rules, null column values do not join with other null
column values. Comparing null column values to other null column values
in a where clause always returns UNKNOWN for null values, regardless
of the comparison operator, and the rows are not included in the results.
For example, this query returns no result rows where column1 contains
NULL in both tables (although it may return other rows):

select column1
from table1, table2

CHAPTER 7 Expressions, Identifiers, and Wildcard Characters

187

where table1.column1 = table2.column1

Difference between FALSE and UNKNOWN

Although neither FALSE nor UNKNOWN returns values, there is an
important logical difference between FALSE and UNKNOWN, because
the opposite of false (“not false”) is true. For example,
“1 = 2” evaluates to false and its opposite, “1 != 2”, evaluates to true. But
“not unknown” is still unknown. If null values are included in a
comparison, you cannot negate the expression to get the opposite set of
rows or the opposite truth value.

Using “NULL” as a character string

Only columns for which NULL was specified in the create table statement
and into which you have explicitly entered NULL (no quotes), or into
which no data has been entered, contain null values. Avoid entering the
character string “NULL” (with quotes) as data for a character column. It
can only lead to confusion. Use “N/A”, “none”, or a similar value instead.
When you want to enter the value NULL explicitly, do not use single or
double quotes.

NULL compared to the empty string

The empty string (“ ”or ‘ ’) is always stored as a single space in variables
and column data. This concatenation statement:

"abc" + "" + "def"

is equivalent to “abc def”, not to “abcdef”. The empty string is never
evaluated as NULL.

Connecting expressions
and connects two expressions and returns results when both are true. or
connects two or more conditions and returns results when either of the
conditions is true.

When more than one logical operator is used in a statement, and is
evaluated before or. You can change the order of execution with
parentheses.

Expressions

188

Table 7-6 shows the results of logical operations, including those that
involve null values:

Table 7-6: Truth tables for logical expressions

The result UNKNOWN indicates that one or more of the expressions
evaluates to NULL, and that the result of the operation cannot be
determined to be either TRUE or FALSE. See “Using nulls in
expressions” on page 185 for more information.

Using parentheses in expressions
Parentheses can be used to group the elements in an expression. When
“expression” is given as a variable in a syntax statement, a simple
expression is assumed. “Logical expression” is specified when only a
logical expression is acceptable.

Comparing character expressions
Character constant expressions are treated as varchar. If they are compared
with non-varchar variables or column data, the datatype precedence rules
are used in the comparison (that is, the datatype with lower precedence is
converted to the datatype with higher precedence). If implicit datatype
conversion is not supported, you must use the convert function.

and TRUE FALSE NULL

TRUE TRUE FALSE UNKNOWN

FALSE FALSE FALSE FALSE

NULL UNKNOWN FALSE UNKNOWN

or TRUE FALSE NULL

TRUE TRUE TRUE TRUE

FALSE TRUE FALSE UNKNOWN

NULL TRUE UNKNOWN UNKNOWN

not

TRUE FALSE

FALSE TRUE

NULL UNKNOWN

CHAPTER 7 Expressions, Identifiers, and Wildcard Characters

189

Comparison of a char expression to a varchar expression follows the
datatype precedence rule; the “lower” datatype is converted to the
“higher” datatype. All varchar expressions are converted to char (that is,
trailing blanks are appended) for the comparison. If a unichar expression
is compared to a char (varchar, nchar, nvarchar) expression, the latter is
implicitly converted to unichar.

Using the empty string
The empty string (“”) or (‘’) is interpreted as a single blank in insert or
assignment statements on varchar or univarchar data. In concatenation of
varchar, char, nchar, nvarchar data, the empty string is interpreted as a
single space; for example:

"abc" + "" + "def"

is stored as “abc def”. The empty string is never evaluated as NULL.

Including quotation marks in character expressions
There are two ways to specify literal quotes within a char, or varchar entry.
The first method is to double the quotes. For example, if you begin a
character entry with a single quote and you want to include a single quote
as part of the entry, use two single quotes:

’I don’’t understand.’

With double quotes:

"He said, ""It’s not really confusing."""

The second method is to enclose a quote in the opposite kind of quote
mark. In other words, surround an entry containing a double quote with
single quotes (or vice versa). Here are some examples:

’George said, "There must be a better way."’
"Isn’t there a better way?"
’George asked, "Isn”t there a better way?"’

Identifiers

190

Using the continuation character
To continue a character string to the next line on your screen, enter a
backslash (\) before going to the next line.

Identifiers
Identifiers are names for database objects such as databases, tables, views,
columns, indexes, triggers, procedures, defaults, rules, and cursors.

Adaptive Server identifiers can be a maximum of 30 bytes in length,
whether single-byte or multibyte characters are used. The first character of
an identifier must be either an alphabetic character, as defined in the
current character set, or the underscore (_) character.

Note Temporary table names, which begin with the pound sign (#), and
local variable names, which begin with the at sign(@), are exceptions to
this rule.

Subsequent characters can include letters, numbers, the symbols #, @, _,
and currency symbols such as $ (dollars), ¥ (yen), and £ (pound sterling).
Identifiers cannot include special characters such as !, %, ^, &, *, and . or
embedded spaces.

You cannot use a reserved word, such as a Transact-SQL command, as an
identifier. For a complete list of reserved words, see Chapter 8, “Reserved
Words.”

Tables beginning with # (temporary tables)
Tables whose names begin with the pound sign (#) are temporary tables.
You cannot create other types of objects whose names begin with the
pound sign.

Adaptive Server performs special operations on temporary table names to
maintain unique naming on a per-session basis. Long temporary table
names are truncated to 13 characters (including the pound sign); short
names are padded to 13 characters with underscores (_). A 17-digit
numeric suffix that is unique for an Adaptive Server session is appended.

CHAPTER 7 Expressions, Identifiers, and Wildcard Characters

191

Case sensitivity and identifiers
Sensitivity to the case (upper or lower) of identifiers and data depends on
the sort order installed on your Adaptive Server. Case sensitivity can be
changed for single-byte character sets by reconfiguring Adaptive Server’s
sort order (see the System Administration Guide for more information).
Case is significant in utility program options.

If Adaptive Server is installed with a case-insensitive sort order, you
cannot create a table named MYTABLE if a table named MyTable or
mytable already exists. Similarly, this command:

select * from MYTABLE

will return rows from MYTABLE, MyTable, or mytable, or any
combination of uppercase and lowercase letters in the name.

Uniqueness of object names
Object names need not be unique in a database. However, column names
and index names must be unique within a table, and other object names
must be unique for each owner within a database. Database names must
be unique on Adaptive Server.

Using delimited identifiers
Delimited identifiers are object names enclosed in double quotes. Using
delimited identifiers allows you to avoid certain restrictions on object
names. Table, view, and column names can be delimited by quotes; other
object names cannot.

Delimited identifiers can be reserved words, can begin with non-
alphabetic characters, and can include characters that would not otherwise
be allowed. They cannot exceed 28 bytes.

 Warning! Delimited identifiers may not be recognized by all front-end
applications and should not be used as parameters to system procedures.

Before creating or referencing a delimited identifier, you must execute:

set quoted_identifier on

Identifiers

192

Each time you use the delimited identifier in a statement, you must enclose
it in double quotes. For example:

create table "1one"(col1 char(3))
create table "include spaces" (col1 int)
create table "grant"("add" int)
insert "grant"("add") values (3)

While the quoted_identifier option is turned on, do not use double quotes
around character or date strings; use single quotes instead. Delimiting
these strings with double quotes causes Adaptive Server to treat them as
identifiers. For example, to insert a character string into col1 of 1table ,
use:

insert "1one"(col1) values (’abc’)

not:

insert "1one"(col1) values ("abc")

To insert a single quote into a column, use two consecutive single
quotation marks. For example, to insert the characters “a’b” into col1 use:

insert "1one"(col1) values(’a’’b’)

Identifying tables or columns by their qualified object name
You can uniquely identify a table or column by adding other names that
qualify it—the database name, owner’s name, and (for a column) the table
or view name. Each qualifier is separated from the next one by a period.
For example:

database.owner.table_name.column_name

database.owner.view_name.column_name

The naming conventions are:

[[database.]owner.]table_name

[[database.]owner.]view_name

Using delimited identifiers within an object name

If you use set quoted_identifier on, you can use double quotes around
individual parts of a qualified object name. Use a separate pair of quotes
for each qualifier that requires quotes. For example, use:

CHAPTER 7 Expressions, Identifiers, and Wildcard Characters

193

database.owner."table_name"."column_name"

rather than:

database.owner."table_name.column_name"

Omitting the owner name

You can omit the intermediate elements in a name and use dots to indicate
their positions, as long as the system is given enough information to
identify the object:

database..table_name

database..view_name

Referencing your own objects in the current database

You need not use the database name or owner name to reference your own
objects in the current database. The default value for owner is the current
user, and the default value for database is the current database.

If you reference an object without qualifying it with the database name and
owner name, Adaptive Server tries to find the object in the current
database among the objects you own.

Referencing objects owned by the database owner

If you omit the owner name and you do not own an object by that name,
Adaptive Server looks for objects of that name owned by the Database
Owner. You must qualify objects owned by the Database Owner only if
you own an object of the same name, but you want to use the object owned
by the Database Owner. However, you must qualify objects owned by
other users with the user’s name, whether or not you own objects of the
same name.

Using qualified identifiers consistently

When qualifying a column name and table name in the same statement, be
sure to use the same qualifying expressions for each; they are evaluated as
strings and must match; otherwise, an error is returned. The second of the
following examples is incorrect because the syntax style for the column
name does not match the syntax style used for the table name.

Identifiers

194

1 select demo.mary.publishers.city

from demo.mary.publishers

city

Boston

Washington

Berkeley

2 select demo.mary.publishers.city

from demo..publishers

The column prefix "demo.mary.publishers" does not

match a table name or alias name used in the query.

Determining whether an identifier is valid
Use the system function valid_name, after changing character sets or
before creating a table or view, to determine whether the object name is
acceptable to Adaptive Server. Here is the syntax:

select valid_name("Object_name")

If object_name is not a valid identifier (for example, if it contains illegal
characters or is more than 30 bytes long), Adaptive Server returns 0. If
object_name is a valid identifier, Adaptive Server returns a nonzero
number.

Renaming database objects
Rename user objects (including user-defined datatypes) with sp_rename.

 Warning! After you rename a table or column, you must redefine all
procedures, triggers, and views that depend on the renamed object.

CHAPTER 7 Expressions, Identifiers, and Wildcard Characters

195

Using multibyte character sets
In multibyte character sets, a wider range of characters is available for use
in identifiers. For example, on a server with the Japanese language
installed, the following types of characters may be used as the first
character of an identifier: Zenkaku or Hankaku Katakana, Hiragana,
Kanji, Romaji, Greek, Cyrillic, or ASCII.

Although Hankaku Katakana characters are legal in identifiers on
Japanese systems, they are not recommended for use in heterogeneous
systems. These characters cannot be converted between the EUC-JIS and
Shift-JIS character sets.

The same is true for some 8-bit European characters. For example, the
character “Œ,” the OE ligature, is part of the Macintosh character set
(codepoint 0xCE). This character does not exist in the ISO 8859-1 (iso_1)
character set. If “Œ” exists in data being converted from the Macintosh to
the ISO 8859-1 character set, it causes a conversion error.

If an object identifier contains a character that cannot be converted, the
client loses direct access to that object.

Pattern matching with wildcard characters
Wildcard characters represent one or more characters, or a range of
characters, in a match_string. A match_string is a character string
containing the pattern to find in the expression. It can be any combination
of constants, variables, and column names or a concatenated expression,
such as:

like @variable + "%".

If the match string is a constant, it must always be enclosed in single or
double quotes.

Use wildcard characters with the keyword like to find character and date
strings that match a particular pattern. You cannot use like to search for
seconds or milliseconds (see “Using wildcard characters with datetime
data” on page 201).

Use wildcard characters in where and having clauses to find character or
date/time information that is like—or not like—the match string:

Pattern matching with wildcard characters

196

{where | having} [not]
expression [not] like match_string

[escape "escape_character "]

expression can be any combination of column names, constants, or
functions with a character value.

Wildcard characters used without like have no special meaning. For
example, this query finds any phone numbers that start with the four
characters “415%”:

select phone
from authors
where phone = "415%"

Using not like
Use not like to find strings that do not match a particular pattern. These two
queries are equivalent: they find all the phone numbers in the authors table
that do not begin with the 415 area code.

select phone
from authors
where phone not like "415%"

select phone
from authors
where not phone like "415%"

For example, this query finds the system tables in a database whose names
begin with “sys”:

select name
from sysobjects
where name like "sys%"

To see all the objects that are not system tables, use

 not like "sys%"

If you have a total of 32 objects and like finds 13 names that match the
pattern, not like will find the 19 objects that do not match the pattern.

not like and the negative wildcard character [^] may give different results
(see “The caret (^) wildcard character” on page 199). You cannot always
duplicate not like patterns with like and ^. This is because not like finds the
items that do not match the entire like pattern, but like with negative
wildcard characters is evaluated one character at a time.

CHAPTER 7 Expressions, Identifiers, and Wildcard Characters

197

A pattern such as like “[^s][^y][^s]%” may not produce the same results.
Instead of 19, you might get only 14, with all the names that begin with “s”
or have “y” as the second letter or have “s” as the third letter eliminated
from the results, as well as the system table names. This is because match
strings with negative wildcard characters are evaluated in steps, one
character at a time. If the match fails at any point in the evaluation, it is
eliminated.

Case and accent insensitivity
If your Adaptive Server uses a case-insensitive sort order, case is ignored
when comparing expression and match_string. For example, this clause:

where col_name like "Sm%"

would return “Smith,” “smith,” and “SMITH” on a case-insensitive
Adaptive Server.

If your Adaptive Server is also accent-insensitive, it treats all accented
characters as equal to each other and to their unaccented counterparts, both
uppercase and lowercase. The sp_helpsort system procedure displays the
characters that are treated as equivalent, displaying an “=” between them.

Using wildcard characters
You can use the match string with a number of wildcard characters, which
are discussed in detail in the following sections. Table 7-7 summarizes the
wildcard characters:

Table 7-7: Wildcard characters used with like

Enclose the wildcard character and the match string in single or double
quotes (like “[dD]eFr_nce”).

Symbol Meaning

% Any string of 0 or more characters

_ Any single character

[] Any single character within the specified range ([a-f]) or set
([abcdef])

[^] Any single character not within the specified range ([^a-f])
or set ([^abcdef])

Pattern matching with wildcard characters

198

The percent sign (%) wildcard character

Use the % wildcard character to represent any string of zero or more
characters. For example, to find all the phone numbers in the authors table
that begin with the 415 area code:

select phone
from authors
where phone like "415%"

To find names that have the characters “en” in them (Bennet, Green,
McBadden):

select au_lname
from authors
where au_lname like "%en%"

Trailing blanks following “%” in a like clause are truncated to a single
trailing blank. For example, “%” followed by two spaces matches
“X ”(one space); “X ” (two spaces); “X ” (three spaces), or any number
of trailing spaces.

The underscore (_) wildcard character

Use the _ wildcard character to represent any single character. For
example, to find all six-letter names that end with “heryl” (for example,
Cheryl):

select au_fname
from authors
where au_fname like "_heryl"

Bracketed ([]) characters

Use brackets to enclose a range of characters, such as [a-f], or a set of
characters such as [a2Br]. When ranges are used, all values in the sort
order between (and including) rangespec1 and rangespec2 are returned.
For example, “[0-z” matches 0-9, A-Z and a-z (and several punctuation
characters) in 7-bit ASCII.

To find names ending with “inger” and beginning with any single
character between M and Z:

select au_lname
from authors
where au_lname like "[M-Z]inger"

To find both “DeFrance” and “deFrance”:

CHAPTER 7 Expressions, Identifiers, and Wildcard Characters

199

select au_lname
from authors
where au_lname like "[dD]eFrance"

The caret (^) wildcard character

The caret is the negative wildcard character. Use it to find strings that do
not match a particular pattern. For example, “[^a-f]” finds strings that are
not in the range a-f and “[^a2bR]” finds strings that are not “a,” “2,” “b,”
or “R.”

To find names beginning with “M” where the second letter is not “c”:

select au_lname
from authors
where au_lname like "M[^c]%"

When ranges are used, all values in the sort order between (and including)
rangespec1 and rangespec2 are returned. For example,
“[0-z]” matches 0-9, A-Z , a-z, and several punctuation characters in 7-bit
ASCII.

Using multibyte wildcard characters
If the multibyte character set configured on your Adaptive Server defines
equivalent double-byte characters for the wildcard characters _, %, - [,],
and ^, you can substitute the equivalent character in the match string. The
underscore equivalent represents either a single- or double-byte character
in the match string.

Using wildcard characters as literal characters
To search for the occurrence of %, _, [,], or ̂ within a string, you must use
an escape character. When a wildcard character is used in conjunction with
an escape character, Adaptive Server interprets the wildcard character
literally, rather than using it to represent other characters.

Adaptive Server provides two types of escape characters:

• Square brackets (a Transact-SQL extension)

• Any single character that immediately follows an escape clause
(compliant with the SQL standards)

Pattern matching with wildcard characters

200

Using square brackets ([])as escape characters

Use square brackets as escape characters for the percent sign, the
underscore, and the left bracket. The right bracket does not need an escape
character; use it by itself. If you use the hyphen as a literal character, it
must be the first character inside a set of square brackets.

Table 7-8 shows examples of square brackets used as escape characters
with like.

Table 7-8: Using square brackets to search for wildcard characters

Using the escape clause

Use the escape clause to specify an escape character. Any single character
in the server’s default character set can be used as an escape character. If
you try to use more than one character as an escape character, Adaptive
Server generates an exception.

Do not use existing wildcard characters as escape characters because:

• If you specify the underscore (_) or percent sign (%) as an escape
character, it loses its special meaning within that like predicate and
acts only as an escape character.

• If you specify the left or right bracket ([or]) as an escape character,
the Transact-SQL meaning of the bracket is disabled within that like
predicate.

• If you specify the hyphen (-) or caret (^) as an escape character, it
loses its special meaning and acts only as an escape character.

An escape character retains its special meaning within square brackets,
unlike wildcard characters such as the underscore, the percent sign, and
the open bracket.

like predicate Meaning

like "5%" 5 followed by any string of 0 or more characters

like "5[%]" 5%

like "_n" an, in, on (and so on)

like "[_]n" _n

like "[a-cdf]" a, b, c, d, or f

like "[-acdf]" -, a, c, d, or f

like "[[]" [

like "]"]

like “[[]ab]” []ab

CHAPTER 7 Expressions, Identifiers, and Wildcard Characters

201

The escape character is valid only within its like predicate and has no effect
on other like predicates contained in the same statement. The only
characters that are valid following an escape character are the wildcard
characters (_, %, [,], or [^]), and the escape character itself. The escape
character affects only the character following it, and subsequent characters
are not affected by it.

If the pattern contains two literal occurrences of the character that happens
to be the escape character, the string must contain four consecutive escape
characters. If the escape character does not divide the pattern into pieces
of one or two characters, Adaptive Server returns an error message. Table
7-9 shows examples of escape clauses used with like.

Table 7-9: Using the escape clause

Using wildcard characters with datetime data
When you use like with datetime values, Adaptive Server converts the
dates to the standard datetime format, then to varchar. Since the standard
storage format does not include seconds or milliseconds, you cannot
search for seconds or milliseconds with like and a pattern.

It is a good idea to use like when you search for datetime values, since
datetime entries may contain a variety of date parts. For example, if you
insert the value “9:20” and the current date into a column named
arrival_time, the clause:

where arrival_time = ’9:20’

would not find the value, because Adaptive Server converts the entry into
“Jan 1 1900 9:20AM.” However, the following clause would find this
value:

where arrival_time like ’%9:20%’

like predicate Meaning

like "5@%" escape "@" 5%

like "*_n" escape "*" _n

like "%80@%%" escape "@" String containing 80%

like "*_sql**%" escape "*" String containing _sql*

like "%#####_#%%" escape "#" String containing ##_%

Pattern matching with wildcard characters

202

203

C H A P T E R 8 Reserved Words

Keywords, also known as reserved words, are words that have special
meanings. This chapter lists Transact-SQL and SQL92 keywords.

Transact-SQL reserved words
The words in the following list are reserved by Adaptive Server as
keywords (part of SQL command syntax). They cannot be used as names
of database objects such as databases, tables, rules, or defaults. They can
be used as names of local variables and as stored procedure parameter
names.

To find the names of existing objects that are reserved words, use
sp_checkreswords.

A

add, all, alter, and, any, arith_overflow, as, asc, at, authorization, avg

B

begin, between, break, browse, bulk, by

C

cascade, case, char_convert, check, checkpoint, close, clustered, coalesce,
commit, compute, confirm, connect, constraint, continue, controlrow,
convert, count, create, current, cursor

D

database, dbcc, deallocate, declare, default, delete, desc, deterministic,
disk distinct, double, drop, dummy, dump

E

else, end, endtran, errlvl, errordata, errorexit, escape, except, exclusive,
exec, execute, exists, exit, exp_row_size, external

Transact-SQL reserved words

204

F

fetch, fillfactor, for, foreign, from, func, function

G

goto, grant, group

H

having, holdlock

I

identity, identity_gap, identity_insert, identity_start, if, in, index, inout,
insert, install, intersect, into, is, isolation

J

jar, join

K

key, kill

L

level, like, lineno, load, lock

M

max, max_rows_per_page, min, mirror, mirrorexit, modify

N

national, new, noholdlock, nonclustered, not, null, nullif,
numeric_truncation

O

of, off, offsets, on, once, online, only, open, option, or, order, out, output,
over

P

partition, perm, permanent, plan, precision, prepare, primary, print,
privileges, proc, procedure, processexit, proxy_table, public

Q

quiesce

CHAPTER 8 Reserved Words

205

R

raiserror, read, readpast, readtext, reconfigure, references remove, reorg,
replace, replication, reservepagegap, return, returns, revoke, role,
rollback, rowcount, rows, rule

S

save, schema, select, set, setuser, shared, shutdown, some, statistics,
stringsize, stripe, sum, syb_identity, syb_restree, syb_terminate

T

table, temp, temporary, textsize, to, tran, transaction, trigger, truncate,
tsequal

U

union, unique, unpartition, update, use, user, user_option, using

V

values, varying, view

W

waitfor, when, where, while, with, work, writetext

SQL92 reserved words
Adaptive Server includes entry-level SQL92 features. Full SQL92
implementation includes the words listed in the following tables as
command syntax. Upgrading identifiers can be a complex process;
therefore, we are providing this list for your convenience. The publication
of this information does not commit Sybase to providing all of these
SQL92 features in subsequent releases. In addition, subsequent releases
may include keywords not included in this list.

The words in the following list are SQL92 keywords that are not reserved
words in Transact-SQL.

A

absolute, action, allocate, are, assertion

SQL92 reserved words

206

B

bit, bit_length, both

C

cascaded, case, cast, catalog, char, char_length, character,
character_length, coalesce, collate, collation, column, connection,
constraints, corresponding, cross, current_date, current_time,
current_timestamp, current_user

D

date, day, dec, decimal, deferrable, deferred, describe, descriptor,
diagnostics, disconnect, domain

E

end-exec, exception, extract

F

false, first, float, found, full

G

get, global, go

H

hour

I

immediate, indicator, initially, inner, input, insensitive, int, integer,
interval

J

join

L

language, last, leading, left, local, lower

M

match, minute, module, month

N

names, natural, nchar, next, no, nullif, numeric

CHAPTER 8 Reserved Words

207

O

octet_length, outer, output, overlaps

P

pad, partial, position, preserve, prior

R

real, relative, restrict, right

S

scroll, second, section, session_user , size , smallint, space, sql, sqlcode,
sqlerror, sqlstate, substring, system_user

T

then, time, timestamp, timezone_hour, timezone_minute, trailing,
translate, translation, trim, true

U

unknown, upper, usage

V

value, varchar

W

when, whenever, write, year

Z

zone

Potential SQL92 reserved words
If you are using the ISO/IEC 9075:1989 standard, also avoid using the
words shown in the following list because these words may become
SQL92 reserved words in the future.

A

after, alias, async

Potential SQL92 reserved words

208

B

before, boolean, breadth

C

call, completion, cycle

D

data, depth, dictionary

E

each, elseif, equals

G

general

I

ignore

L

leave, less, limit, loop

M

modify

N

new, none

O

object, oid, old, operation, operators, others

P

parameters, pendant, preorder, private, protected

R

recursive, ref, referencing, resignal, return, returns, routine, row

S

savepoint, search, sensitive, sequence, signal, similar, sqlexception,
structure

T

test, there, type

CHAPTER 8 Reserved Words

209

U

under

V

variable, virtual, visible

W

wait, without

Potential SQL92 reserved words

210

211

C H A P T E R 9 SQLSTATE Codes and Messages

This chapter describes Adaptive Server’s SQLSTATE status codes and
their associated messages. SQLSTATE codes are required for entry level
SQL92 compliance. They provide diagnostic information about two types
of conditions:

• Warnings – conditions that require user notification but are not
serious enough to prevent a SQL statement from executing
successfully

• Exceptions – conditions that prevent a SQL statement from having
any effect on the database

Each SQLSTATE code consists of a 2-character class followed by a 3-
character subclass. The class specifies general information about error
type. The subclass specifies more specific information.

SQLSTATE codes are stored in the sysmessages system table, along with
the messages that display when these conditions are detected. Not all
Adaptive Server error conditions are associated with a SQLSTATE
code—only those mandated by SQL92. In some cases, multiple Adaptive
Server error conditions are associated with a single SQLSTATE value.

Warnings
Adaptive Server currently detects only one SQLSTATE warning
condition, which is described in Table 9-1:

Table 9-1: SQLSTATE warnings

Message Value Description

Warning - null value eliminated in set function. 01003 Occurs when you use an aggregate function (avg,
max, min, sum, or count) on an expression with a
null value.

Exceptions

212

Exceptions
Adaptive Server detects the following types of exceptions:

• Cardinality violations

• Data exceptions

• Integrity constraint violations

• Invalid cursor states

• Syntax errors and access rule violations

• Transaction rollbacks

• with check option violations

Exception conditions are described in Table 9-2 through Table 9-8. Each
class of exceptions appears in its own table. Within each table, conditions
are sorted alphabetically by message text.

Cardinality violations
Cardinality violations occur when a query that should return only a single
row returns more than one row to an Embedded SQL™ application.

Table 9-2: Cardinality violations

Data exceptions
Data exceptions occur when an entry:

• Is too long for its datatype,

• Contains an illegal escape sequence, or

• Contains other format errors.

Message Value Description

Subquery returned more than 1 value. This is
illegal when the subquery follows =, !=, <, <=, >,
>=. or when the subquery is used as an expression.

21000 Occurs when:

• A scalar subquery or a row subquery returns
more than one row.

• A select into parameter_list query in Embedded
SQL returns more than one row.

CHAPTER 9 SQLSTATE Codes and Messages

213

Table 9-3: Data exceptions

Integrity constraint violations
Integrity constraint violations occur when an insert, update, or delete
statement violates a primary key, foreign key, check, or unique constraint or
a unique index.

Table 9-4: Integrity constraint violations

Message Value Description

Arithmetic overflow occurred. 22003 Occurs when:

• An exact numeric type would lose precision or
scale as a result of an arithmetic operation or
sum function.

• An approximate numeric type would lose
precision or scale as a result of truncation,
rounding, or a sum function.

Data exception - string data right truncated. 22001 Occurs when a char, unichar, univarchar, or varchar
column is too short for the data being inserted or
updated and non-blank characters must be
truncated.

Divide by zero occurred. 22012 Occurs when a numeric expression is being
evaluated and the value of the divisor is zero.

Illegal escape character found. There are fewer
bytes than necessary to form a valid character.

22019 Occurs when you are searching for strings that
match a given pattern if the escape sequence does
not consist of a single character.

Invalid pattern string. The character following the
escape character must be percent sign, underscore,
left square bracket, right square bracket, or the
escape character.

22025 Occurs when you are searching for strings that
match a particular pattern when:

• The escape character is not immediately
followed by a percent sign, an underscore, or
the escape character itself, or

• The escape character partitions the pattern into
substrings whose lengths are other than 1 or 2
characters.

Message Value Description

Attempt to insert duplicate key row in object
object_name with unique index index_name

23000 Occurs when a duplicate row is inserted into a table
that has a unique constraint or index.

Check constraint violation occurred, dbname =
database_name, table name = table_name,
constraint name = constraint_name

23000 Occurs when an update or delete would violate a
check constraint on a column.

Exceptions

214

Invalid cursor states
Invalid cursor states occur when:

• A fetch uses a cursor that is not currently open, or

• An update where current of or delete where current of affects a cursor
row that has been modified or deleted, or

• An update where current of or delete where current of affects a cursor
row that not been fetched.

Table 9-5: Invalid cursor states

Dependent foreign key constraint violation in a
referential integrity constraint.
dbname = database_name,
table name = table_name, constraint name =
constraint_name

23000 Occurs when an update or delete on a primary key
table would violate a foreign key constraint.

Foreign key constraint violation occurred, dbname
= database_name, table name = table_name,
constraint name = constraint_name

23000 Occurs when an insert or update on a foreign key
table is performed without a matching value in the
primary key table.

Message Value Description

Message Value Description

Attempt to use cursor cursor_name which is not
open. Use the system stored procedure
sp_cursorinfo for more information.

24000 Occurs when an attempt is made to fetch from a
cursor that has never been opened or that was
closed by a commit statement or an implicit or
explicit rollback. Reopen the cursor and repeat the
fetch.

Cursor cursor_name was closed implicitly because
the current cursor position was deleted due to an
update or a delete. The cursor scan position could
not be recovered. This happens for cursors which
reference more than one table.

24000 Occurs when the join column of a multitable cursor
has been deleted or changed. Issue another fetch to
reposition the cursor.

The cursor cursor_name had its current scan
position deleted because of a DELETE/UPDATE
WHERE CURRENT OF or a regular searched
DELETE/UPDATE. You must do a new FETCH
before doing an UPDATE or DELETE WHERE
CURRENT OF.

24000 Occurs when a user issues an update/delete where
current of whose current cursor position has been
deleted or changed. Issue another fetch before
retrying the update/delete where current of.

CHAPTER 9 SQLSTATE Codes and Messages

215

Syntax errors and access rule violations
Syntax errors are generated by SQL statements that contain unterminated
comments, implicit datatype conversions not supported by Adaptive
Server or other incorrect syntax.

Access rule violations are generated when a user tries to access an object
that does not exist or one for which he or she does not have the correct
permissions.

Table 9-6: Syntax errors and access rule violations

The UPDATE/DELETE WHERE CURRENT OF
failed for the cursor cursor_name because it is not
positioned on a row.

24000 Occurs when a user issues an update/delete where
current of on a cursor that:

• Has not yet fetched a row

• Has fetched one or more rows after reaching the
end of the result set

Message Value Description

Message Value Description

command permission denied on object
object_name, database database_name, owner
owner_name .

42000 Occurs when a user tries to access an object for
which he or she does not have the proper
permissions.

Implicit conversion from datatype ‘datatype’ to
‘datatype’ is not allowed. Use the CONVERT
function to run this query.

42000 Occurs when the user attempts to convert one
datatype to another but Adaptive Server cannot do
the conversion implicitly.

Incorrect syntax near object_name. 42000 Occurs when incorrect SQL syntax is found near
the object specified.

Insert error: column name or number of supplied
values does not match table definition.

42000 Occurs during inserts when an invalid column
name is used or when an incorrect number of
values is inserted.

Missing end comment mark ‘*/’. 42000 Occurs when a comment that begins with the /*
opening delimiter does not also have the */ closing
delimiter.

object_name not found. Specify owner.objectname
or use sp_help to check whether the object exists
(sp_help may produce lots of output).

42000 Occurs when a user tries to reference an object that
he or she does not own. When referencing an
object owned by another user, be sure to qualify the
object name with the name of its owner.

Exceptions

216

Transaction rollbacks
Transaction rollbacks occur when the transaction isolation level is set to 3,
but Adaptive Server cannot guarantee that concurrent transactions can be
serialized. This type of exception generally results from system problems
such as disk crashes and offline disks.

Table 9-7: Transaction rollbacks

with check option violation
This class of exception occurs when data being inserted or updated
through a view would not be visible through the view.

Table 9-8: with check option violation

The size (size) given to the object_name exceeds
the maximum. The largest size allowed is size.

42000 Occurs when:

• The total size of all the columns in a table
definition exceeds the maximum allowed row
size.

• The size of a single column or parameter
exceeds the maximum allowed for its datatype.

Message Value Description

Message Value Description

Your server command (process id #process_id)
was deadlocked with another process and has been
chosen as deadlock victim. Re-run your command.

40001 Occurs when Adaptive Server detects that it cannot
guarantee that two or more concurrent transactions
can be serialized.

Message Value Description

The attempted insert or update failed because the
target view was either created WITH CHECK
OPTION or spans another view created WITH
CHECK OPTION. At least one resultant row from
the command would not qualify under the CHECK
OPTION constraint.

44000 Occurs when a view, or any view on which it
depends, was created with a with check option
clause.

217

Symbols
& (ampersand)

“and” bitwise operator 182
* (asterisk)

for overlength numbers 156
multiplication operator 181

\ (backslash)
character string continuation with 190

::= (BNF notation)
in SQL statements xv

^ (caret)
“exclusive or” bitwise operator 182
wildcard character 197, 199

: (colon)
preceding milliseconds 60, 98

, (comma)
in default print format for money values 17
not allowed in money values 18
in SQL statements xv

{} (curly braces)
in SQL statements xv

$ (dollar sign)
in identifiers 190
in money datatypes 18

.. (dots) in database object names 193
= (equals sign)

comparison operator 184
> (greater than)

comparison operator 184
>= (greater than or equal to) comparison operator

184
< (less than)

comparison operator 184
<= (less than or equal to) comparison operator 184
- (minus sign)

arithmetic operator 181
for negative monetary values 18
in integer data 11

!= (not equal to) comparison operator 184

<> (not equal to) comparison operator 184
!> (not greater than) comparison operator 184
!< (not less than) comparison operator 184
() (parentheses)

in expressions 188
in SQL statements xv

% (percent sign)
arithmetic operator (modulo) 181
wildcard character 197

. (period)
preceding milliseconds 60, 98
separator for qualifier names 192

| (pipe)
“or” bitwise operator 182

+ (plus)
arithmetic operator 181
in integer data 11
null values and 183
string concatenation operator 183

£ (pound sterling sign)
in identifiers 190
in money datatypes 18

“ ” (quotation marks)
comparison operators and 184
enclosing constant values 63
enclosing datetime values 19
enclosing empty strings 187, 189
in expressions 189
literal specification of 189

/ (slash)
arithmetic operator (division) 181

[] (square brackets)
character set wildcard 197, 198
in SQL statements xv

[^] (square brackets and caret) character set wildcard
197

~ (tilde)
“not” bitwise operator 182

_ (underscore)
character string wildcard 197, 198

Index

Index

218

object identifier prefix 177, 190
in temporary table names 190

¥ (yen sign)
in identifiers 190
in money datatypes 18

Numerics
“0x” 28, 29, 57
21st century numbers 19

A
abbreviations

chars for characters, patindex 127, 129
date parts 59, 98

abort option, lct_admin function 115
abs mathematical function 67
accent sensitivity, wildcard characters and 197
acos mathematical function 67
adding

interval to a date 94
timestamp column 169
user-defined datatypes 39

addition operator (+) 181
aggregate functions 45–51

See also row aggregates; individual function names
cursors and 49
difference from row aggregates 49
group by clause and 46, 48
having clause and 45
scalar aggregates 46
vector aggregates 46

all keyword
subqueries including 185

alter table command
adding timestamp column 169

ampersand (&)
“and” bitwise operator 182

and (&)
bitwise operator 182

and keyword
in expressions 187
range-end 185

angles, mathematical functions for 68
any keyword

in expressions 185
approximate numeric datatypes 14
arithabort option, set

arith_overflow and 9, 56
mathematical functions and arith_overflow 61
mathematical functions and numeric_truncation

57, 61
arithignore option, set

arith_overflow and 56
mathematical functions and arith_overflow 62

arithmetic
errors 61
expressions 180
operations, approximate numeric datatypes and 14
operations, exact numeric datatypes and 11
operations, money datatypes and 17
operators, in expressions 181

ASCII characters 69
ascii string function 69
asin mathematical function 69
asterisk (*)

multiplication operator 181
overlength numbers 156

atan mathematical function 70
@@textcolid global variable 37
@@textdbid global variable 37
@@textobjid global variable 37
@@textptr global variable 37
@@textsize global variable 37
@@textts global variable 37
atn2 mathematical function 70
automatic operations

update of column, timestamp 18
avg aggregate function 71

B
backslash (\)

for character string continuation 190
Backus Naur Form (BNF) notation xiv, xv
base 10 logarithm function 119
base date 20
between keyword 185

Index

219

binary
datatypes 27–30
datatypes, “0x” prefix 28
datatypes, trailing zeros in 28
expressions 179
expressions, concatenating 183
representation of data for bitwise operations 181
sort 81, 153

binary datatype 27–30
bit datatype 30
bitwise operators 181–182
blanks

See also spaces, character
character datatypes and 24–27
comparisons 184
empty string evaluated as 189
like and 198
removing leading, with ltrim function 121
removing trailing, with rtrim function 144

BNF notation in SQL statements xiv, xv
boolean (logical) expressions 179
brackets. See square brackets []
browse mode

timestamp datatype and 18, 168
built-in functions 41–178

See also individual function names
aggregate 45
conversion 51
date 59
image 65
mathematical 60
security 62
string 62
system 64
text 65
type conversion 82–86

by row aggregate subgroup 49

C
calculating dates 95
caldayofweek date part 98
calweekofyear date part 98
calyearofweek date part 98
case sensitivity

and identifiers 191
comparison expressions and 184, 197
in SQL xvi

cdw. See caldayofweek date part
ceiling mathematical function 73
chains of pages

text or image data 33
char datatype 24

in expressions 189
char string function 74
char_length string function 77
character data, avoiding “NULL” in 187
character datatypes 24–27
character expressions

blanks or spaces in 24–27
defined 179
syntax 180

character sets
conversion errors 195
iso_1 195
multibyte 195
object identifiers and 195

character strings
continuation with backslash (\) 190
empty 189
specifying quotes within 189
wildcards in 195

characters
See also spaces, character
“0x” 28, 29, 57
deleting, using stuff function 158
number of 77
wildcard 195–201

charindex string function 76
client, host computer name and 109
codes, soundex 154
col_length system function 78
col_name system function 79
colon (:), preceding milliseconds 98
column identifiers. See identifiers
column name

as qualifier 192
in parentheses 49
returning 79

columns
identifying 192

Index

220

length definition 78
length of 79
numeric, and row aggregates 49
sizes of (list) 2–4

comma (,)
default print format for money values 17
not allowed in money values 18
in SQL statements xv

comparing values
difference string function 103
in expressions 184
timestamp 168

comparison operators
See also relational expressions
in expressions 183
symbols for 184

compute clause
row aggregates and 48

computing dates 95
concatenation

null values 183
using + operator 183

constants
and string functions 63
comparing in expressions 188
expression for 179

continuation lines, character string 190
conventions

See also syntax
identifier name 192
Transact-SQL syntax xiv
used in the Reference Manual xiv

conversion
automatic values 8
between character sets 195
character value to ASCII code 69
datatype 52
dates used with like keyword 22
degrees to radians 133
explicit 52
implicit 8, 52, 188
integer value to character value 75, 167
lower to higher datatypes 188
lowercase to uppercase 169, 170, 171
null values and automatic 8
radians to degrees 102

string concatenation 183
styles for dates 84
uppercase to lowercase 120

convert function 82–86
concatenation and 183
date styles 84

cos mathematical function 86
cot mathematical function 87
count aggregate function 88
count(*) aggregate function 89
CP 850 Alternative

lower case first 82, 153
no accent 82, 153
no case preference 82, 153

CP 850 Scandinavian
dictionary 82, 153
no case preference 82, 153

create table command
null values and 83, 187

curly braces ({}) in SQL statements xv
currency symbols 18, 190
current date 107
current user

roles of 147
suser_id system function 162
suser_name system function 163
user system function 174
user_id system function 175
user_name system function 176

cursors
aggregate functions and 49

curunreservedpgs system function 89
cwk. See calweekofyear date part
cyr. See calyearofweek date part
cyrillic characters 195

D
data_pgs system function 90
database object owners

identifiers and 193
database objects

See also individual object names
ID number (object_id) 125
identifier names 190

Index

221

user-defined datatypes as 39
database owners

name as qualifier 192, 193
objects and identifiers 193

databases
See also database objects
getting name of 101
ID number, db_id function 101

datalength system function 92
compared to col_length 79

datatype conversions
binary and numeric data 58
bit information 58
character information 53
convert function 85
date and time information 55
domain errors 57, 85
functions for 51–58
hexadecimal-like information 57
hextoint function 108
image 58, 86
implicit 52
inttohex function 112
money information 54
numeric information 54, 55
overflow errors 55
rounding during 54
scale errors 56

datatype precedence. See precedence
datatypes 1–40

See also user-defined datatypes; individual
datatype names

approximate numeric 14
binary 27–30
bit 30
date and time 19–23
datetime values comparison 184
decimal 12–14
dropping user-defined 39
exact numeric 11–14
hierarchy 6
integer 11–12
list of 2
mixed, arithmetic operations on 181
synonyms for 2
trailing zeros in binary 28

varbinary 151
date

getting current 107
date formats 20
date functions 59–60

See also individual function names
date parts

abbreviation names and values 59, 98
entering 19
order of 21

dateadd function 94
datediff function 95–96
datefirst option, set 96, 100
dateformat option, set 21
datename function 97
datepart function 97
dates

comparing 184
datatypes 19–23
default display settings 22
earliest allowed 19, 59, 94
entry formats 21
pre-1753 datatypes for 59, 94

datetime datatype 19–23
comparison of 184
conversion 23
date functions and 98
values and comparisons 23

day date part 59, 98
dayofyear date part abbreviation and values 59, 98
days

date style for 84
db_id system function 101
db_name system function 101
DB-Library programs

overflow errors 73, 161
dd. See day date part
decimal datatype 12–14
decimal numbers

round function and 142
str function, representation of 156

decimal points
datatypes, allowing in 12
in integer data 11

default settings
date display format 22

Index

222

weekday order 100
default Unicode multilingual 82, 153
default values

datatype length 83
datatype precision 83
datatype scale 83

degrees mathematical function 102
degrees, conversion to radians 133
delete command

text row 35
devices

See also sysdevices table
difference string function 103
division operator (/) 181
dollar sign ($)

in identifiers 190
in money datatypes 18

domain rules
mathematical functions errors in 61

dots (..) for omitted name elements 193
double precision datatype 16
double-byte characters. See Multibyte character sets
double-precision floating-point values 16
doubling quotes

in expressions 189
in character strings 25

dropping
character with stuff function 158
leading or trailing blanks 121

duplicate rows
text or image 37

duplication of text. See replicate string function
dw. See weekday date part
dy. See dayofyear date part

E
e or E exponent notation

approximate numeric datatypes 16
float datatype 5
money datatypes 17

embedded spaces. See spaces, character
empty string (“ ”) or (’ ’)

not evaluated as null 187
as a single space 27, 189

enclosing quotes in expressions 189
equal to. See comparison operators
error handling

domain or range 61
errors

arithmetic overflow 55
convert function 53–57, 85
divide-by-zero 55
domain 57, 85
scale 56
trapping mathematical 61

escape characters 200
escape keyword 200–201
European characters in object identifiers 195
exact numeric datatypes 11–14

arithmetic operations and 11
exists keyword

in expressions 185
exp mathematical function 105
explicit null value 187
exponent, datatype (e or E)

approximate numeric types 16
float datatype 5
money types 17

exponential value 105
expressions

definition of 179
enclosing quotes in 189
including null values 185
name and table name qualifying 193
types of 179

F
finding

active roles 147
current date 107
database ID 100
database name 101
server user ID 162
server user name 162
starting position of an expression 76
user aliases 177
user IDs 174
user names 174, 175

Index

223

valid identifiers 176
first-of-the-months, number of 95
fixed-length columns

binary datatypes for 28
character datatypes for 24
null values in 8

float datatype 16
floating-point data 179

str character representation of 156
floor mathematical function 106
formats

See also dates
date 20

formats, date. See dates
free pages, curunreservedpgs system function 90
front-end applications, browse mode and 168
functions 41

aggregate 45
conversion 51
date 59
image 65
mathematical 60
security 62
sortkey 151
string 62
system 64
text 65

functions, built-in, type conversion 82–86

G
GB Pinyin 82, 153
getdate date function 107
greater than. See comparison operators
Greek characters 195
group by clause

aggregate functions and 46, 48
guest users 175

H
having clause

aggregate functions and 45
hexadecimal numbers

converting 57
hextoint function 108
hh. See hour date part
hierarchy

See also precedence
operators 180

historic dates, pre-1753 59, 94
host computer name 109
host process ID, client process 109
host_id system function 109
host_name system function 109
hour date part 59, 98
hour values date style 84

I
identifiers 190–195

case sensitivity and 191
renaming 194
system functions and 177

identities
sa_role and Database Owner 175
server user (suser_id) 163
user (user_id) 175

IDs, server role
role_id 141

IDs, user
database (db_id) 101
server user 163
user_id function for 162

image datatype 32–38
initializing 33
null values in 34
prohibited actions on 36

image functions 65
implicit conversion of datatypes 8, 188
in keyword

in expressions 185
index pages

allocation of 136
system functions 91, 136
total of table and 136

index_col system function 110
index_colorder function 111
indexes

Index

224

See also clustered indexes; database objects;
nonclustered indexes

sysindexes table 34
initializing

text or image columns 35
inserting

automatic leading zero 29
spaces in text strings 155

int datatype 11
aggregate functions and 73, 161

integer data
in SQL 179

integer datatypes, converting to 57
integer remainder. See Modulo operator (%)
internal datatypes of null columns 8

See also datatypes
internal structures, pages used for 91, 136
inttohex function 112
is not null keyword in expressions 185
is null keyword

in expressions 185
is_sec_service_on security function 113
isnull system function 113
ISO 8859-5 Cyrillic dictionary 82, 153
ISO 8859-5 Russian dictionary 82, 153
ISO 8859-9 Turkish dictionary 82, 153
iso_1 character set 195
isql utility command

See also Utility Programs manual
approximate numeric datatypes and 15

J
Japanese character sets

object identifiers and 195
joins

count or count(*) with 89
null values and 186

K
keywords 203–209

Transact-SQL 190, 203–205

L
languages, alternate

effect on date parts 100
weekday order and 100

last-chance threshold
lct_admin function 116

last-chance thresholds 116
latin-1 English, French, German

dictionary 82, 153
no accent 82, 153
no case 82, 153
no case preference 82, 153

latin-1 Spanish
dictionary 82, 153
no accent 82, 153
no case 82, 153

lct_admin system function 116
leading blanks, removal with ltrim function 121
leading zeros, automatic insertion of 29
length

See also size
of expressions in bytes 93
of columns 79

less than. See comparison operators
license_enabled system function 117
like keyword

searching for dates with 22
wildcard characters used with 197

linkage, page. See pages, data
listing

datatypes with types 6–7
lists

datatypes 2
functions 41–45

literal character specification
like match string 199
quotes (“ ”) 189

literal values
datatypes of 5
null 187

lockscheme system function 118
log mathematical function 118, 119
log10 mathematical function 119
logarithm, base 10 119
logical expressions 179

syntax 180

Index

225

truth tables for 188
log10 mathematical function 119
lower and higher datatypes. See precedence
lower string function 120
lowercase letters, sort order and

See also case sensitivity
ltrim string function 120

M
macintosh character set 195
matching

See also Pattern matching
name and table name 193

mathematical functions 60–62
max aggregate function 122
messages

mathematical functions and 62
mi. See minute date part
midnights, number of 95
millisecond date part 59, 98
millisecond values, datediff results in 95
min aggregate function 123
minus sign (-)

in integer data 11
subtraction operator 181

minute date part 59, 98
mixed datatypes, arithmetic operations on 181
mm. See month date part
model database

user-defined datatypes in 38
modulo operator (%) 181
money

default comma placement 17
symbols 190

money datatype 17, 19
arithmetic operations and 17

month date part 59, 98
month values

date part abbreviation and 59, 98
date style 84

ms. See millisecond date part
multibyte character sets

converting 53
identifier names 195

nchar datatype for 24
wildcard characters and 199

multilingual, Unicode 82, 153
multiplication operator (*) 181
mut_excl_roles system function 124
mutual exclusivity of roles

mut_excl_roles and 124

N
“N/A”, using “NULL” or 187
names

See also identifiers
checking with valid_name 194
date parts 59, 98
db_name function 101
finding similar-sounding 154
host computer 109
index_col and index 110
object_name function 126
omitted elements of (..) 193
qualifying database objects 192, 195
suser_name function 163
user system function 174
user_name function 176
weekday numbers and 100

naming
conventions 190–195
database objects 190–195
identifiers 190–195
user-defined datatypes 39

national character. See nchar datatype
natural logarithm 118, 119
nchar datatype 24
negative sign (-) in money values 18
nesting

aggregate functions 46
string functions 63

“none”, using “NULL” or 187
not keyword

in expressions 185
not like keyword 196
not null keyword

create table 83
not null values

Index

226

spaces in 27
null keyword

create table 83
in expressions 185

null string in character columns 158, 187
null values

column datatype conversion for 26
default parameters as 186
in expressions 186
text and image columns 34

number (quantity of)
first-of-the-months 95
midnights 95
rows in count(*) 89
rows reported by rowcnt 143
Sundays 95

number of characters
date interpretation and 22

number of pages
allocated to table or index 136
reserved_pgs function 136
used by table and clustered index (total) 173
used by table or index 91
used_pgs function 173

numbers
asterisks (**) for overlength 156
converting strings of 27
database ID 101
object ID 125
odd or even binary 29
random float 134
weekday names and 100

numeric data
row aggregates and 49

numeric datatype 12
range and storage size 3

numeric expressions 179
round function for 142

nvarchar datatype 24–25
spaces in 24

O
object Allocation Map (OAM) pages 173
object names, database

See also identifiers
user-defined datatype names as 39

object_id system function 125
object_name system function 126
objects. See database objects; databases
operators

arithmetic 181
bitwise 181–182
comparison 183
precedence 180

or keyword
in expressions 187

order
See also indexes; precedence; sort order
of execution of operators in expressions 181
of date parts 21
reversing character expression 137
weekday numeric 100

order by clause 151
other users, qualifying objects owned by 195
overflow errors

DB-Library 73, 161
ownership

of objects being referenced 195

P
padding, data

blanks and 24
underscores in temporary table names 190
with zeros 28

pages, data
allocation of 136
chain of 33
data_pgs system function 91
reserved_pgs system function 136
used for internal structures 91, 136
used in a table or index 91, 173
used_pgs system function 173

pages, index
number used in nonclustered 173

pages, OAM (Object Allocation Map)
number of 173

pagesize system function 129
parentheses ()

Index

227

See also Symbols section of this index
in an expression 188
in SQL statements xv

partitioned tables
size of 132

patindex string function 126
text/image function 37

pattern matching 195
See also String functions; wildcard characters
charindex string function 76
difference string function 103
patindex string function 128

percent sign (%)
modulo operator 181
wildcard character 197

period (.)
preceding milliseconds 98
separator for qualifier names 192

pi mathematical function 130
platform-independent conversion

hexadecimal strings to integer values 108
integer values to hexadecimal strings 112

plus (+)
arithmetic operator 181
in integer data 11
null values and 183
string concatenation operator 183

pointers
null for uninitialized text or image column 165
text and image page 165
text or image column 33, 38

pound sterling sign (£)
in identifiers 190
in money datatypes 18

power mathematical function 131
precedence

of lower and higher datatypes 189
of operators in expressions 180

preceding blanks. See blanks; spaces, character
precision, datatype

approximate numeric types 15
exact numeric types 12
money types 17

proc_role system function 131
ptn_data_pgs system function 132
punctuation

characters allowed in identifiers 190

Q
qq. See quarter date part
qualifier names 192, 195
quarter date part 59, 98
quotation marks (“ ”)

comparison operators and 184
for empty strings 187, 189
enclosing constant values 63
enclosing datetime values 19
in expressions 189
literal specification of 189

R
radians mathematical function 133
radians, conversion to degrees 102
rand mathematical function 134
range

See also numbers; size
of date part values 59, 98
datediff results 95
errors in mathematical functions 61
money values allowed 17
of recognized dates 19
wildcard character specification of 198, 199

range queries
and end keyword 185
between start keyword 185

readtext command
text data initialization requirement 35

real datatype 16
reference information

datatypes 1
reserved words 203
Transact-SQL functions 41

relational expressions 180
See also comparison operators

replicate string function 136
reserve option, lct_admin function 114
reserved words 203–209

See also keywords

Index

228

database object identifiers and 190
SQL92 205
Transact-SQL 203–205

reserved_pgs system function 136
results

of row aggregate operations 49
retrieving

similar-sounding words or names 154
reverse string function 137
right string function 139
right-justification of str function 157
role hierarchies

role_contain and 139
role_contain system function 139
role_id system function 140
role_name system function 141
roles

checking with proc_role 132
showing system with show_role 147

roles, user-defined
mutual exclusivity and 124

round mathematical function 142
rounding 142

approximate numeric datatypes 15
datetime values 55
money values 17, 54
str string function and 156

row aggregates 49
compute and 48
difference from aggregate functions 49

rowcnt system function 143
rows, table

detail and summary results 49
number of 143
row aggregates and 49

rtrim string function 144
rules

See also database objects

S
scalar aggregates

nesting vector aggregates within 46
scale, datatype 13

decimal 7

IDENTITY columns 12
loss during datatype conversion 10
numeric 7

search conditions
datetime data 22

second date part 59, 98
seconds, datediff results in 95
security

functions 62
security functions 62
seed values

rand function 135
select command 151

aggregates and 45
for browse 168
restrictions in standard SQL 47
in Transact-SQL compared to standard SQL 47

select into command
not allowed with compute 51

server user name and ID
suser_id function 162
suser_name function for 163

shift-JIS binary order 82, 153
show_role system function 147
show_sec_services security function 148
sign mathematical function 149
similar-sounding words. See soundex string function
sin mathematical function 149
single quotes. See quotation marks
single-byte character sets

char datatype for 24
size

See also length; number (quantity of); range; size
limit; space allocation

column 79
floor mathematical function 106
identifiers (length) 190
image datatype 32
of pi 130
text datatype 32

size limit
approximate numeric datatypes 16
binary datatype 28
char columns 24
datatypes 2–4
datetime datatype 20

Index

229

double precision datatype 16
exact numeric datatypes 11
fixed-length columns 24
float datatype 16
image datatype 28
integer value smallest or largest 106
money datatypes 17
nchar columns 24
nvarchar columns 25
real datatype 16
smalldatetime datatype 20
varbinary datatype 28
varchar columns 24

slash (/)
division operator 181

smalldatetime datatype 19
date functions and 98

smallint datatype 11
smallmoney datatype 17, 19
sort order

character collation behavior 150, 151
comparison operators and 184

sortkey function 151
soundex string function 154
sp_bindefault system procedure

user-defined datatypes and 39
sp_bindrule system procedure

user-defined datatypes and 39
sp_help system procedure 39
space string function 155
spaces, character

See also blanks
in character datatypes 24–27
empty strings (“ ”) or (’ ’) as 187, 189
inserted in text strings 155
like datetime values and 23
not allowed in identifiers 190

speed (Server)
binary and varbinary datatype access 28

SQL (used with Sybase databases). See Transact-SQL
SQL standards

aggregate functions and 47
concatenation and 183

SQLSTATE codes 211–216
exceptions 212–216

sqrt mathematical function 155

square brackets []
caret wildcard character [^] and 197, 199
in SQL statements xv
wildcard specifier 197

square root mathematical function 155
ss. See second date part
storage management

text and image data 34
str string function 156
string functions 62–64

See also text datatype
strings, concatenating 183
stuff string function 158
style values, date representation 84
subqueries

any keyword and 185
in expressions 185

substring string function 160
subtraction operator (-) 181
sum aggregate function 161
sundays, number value 95
suser_id system function 162
suser_name system function 163
syb_sendmsg function 163
symbols

See also wildcard characters; Symbols section of this
index

arithmetic operator 181
comparison operator 184
in identifier names 190
matching character strings 197
money 190
in SQL statements xiv, xv
wildcards 197

synonyms
chars and characters, patindex 127, 129

synonyms for datatypes 2
syntax conventions, Transact-SQL xiv
syscolumns table 30
sysindexes table

name column in 34
syssrvroles table

role_id system function and 140
system datatypes. See datatypes
system functions 64–65
system roles

Index

230

show_role and 147
system tables

sysname datatype 31

T
table pages

See also pages, data
system functions 91

tables
identifying 192
names as qualifiers 192
worktables 45

tan mathematical function 164
tangents, mathematical functions for 164
tempdb database

user-defined datatypes in 38
temporary tables

naming 190
text datatype 32–38

convert command 37
converting 54
initializing with null values 33
null values 34
prohibited actions on 36

text functions 65
text page pointer 79
text pointer values 165
@@textcolid global variable 37
@@textdbid global variable 37
@@textobjid global variable 37
textptr function 165
@@textptr global variable 37
@@textsize global variable 37
@@textts global variable 37
textvalid function 166
Thai dictionary 82, 153
thresholds

last-chance 116
time values

datatypes 19–23
timestamp datatype 18–19

automatic update of 18
browse mode and 18, 168
comparison using tsequal function 168

tinyint datatype 11
trailing blanks. See blanks
Transact-SQL

aggregate functions in 47
reserved words 203–205

translation
of integer arguments into binary numbers 182

triggers
See also database objects; stored procedures

trigonometric functions 60, 60–164
true/false data, bit columns for 30
truncation

arithabort numeric_truncation 9
binary datatypes 28
character string 24
datediff results 95
str conversion and 157
temporary table names 190

truth tables for logical expressions 188
tsequal system function 168
twenty-first century numbers 19

U
UDP messaging 163
underscore (_)

character string wildcard 197, 198
object identifier prefix 177, 190
in temporary table names 190

unicode multilingual, default 82, 153
unique names as identifiers 191
updating

See also changing 18
in browse mode 168
prevention during browse mode 168

upper string function 171
uppercase letter preference

See also case sensitivity; order by clause
us_english language

weekdays setting 100
used_pgs system function 173
User Datagram Protocol messaging 163
user IDs

user_id function for 175
valid_user function 177

Index

231

user keyword
system function 174

user names 176
finding 163

user objects. See database objects
user system function 174
user_id system function 175
user_name system function 176
user-created objects. See database objects
user-defined datatypes

See also datatypes
creating 38
dropping 39
sysname as 31

user-defined roles
mutual exclusivity and 124

using bytes option, patindex string function 127,
128, 129

V
valid_name system function 177

using after changing character sets 194
valid_user system function 177
varbinary datatype 27–29, 151
varchar datatype 24–25

datetime values conversion to 23
in expressions 189
spaces in 24

variable-length character. See varchar datatype
vector aggregates 46

nesting inside scalar aggregates 46
view name in qualified object name 192

W
week date part 59, 98
weekday date part 59, 98
weekday date value

names and numbers 100
where clause

null values in a 186
wildcard characters 195–201

See also patindex string function

in a like match string 197
literal characters and 199
used as literal characters 199

wk. See week date part
words, finding similar-sounding 154
worktables, number of 45
writetext command

text data initialization requirement 35

Y
year date part 59, 98
year values, date style 84
yen sign (¥)

in identifiers 190
in money datatypes 18

yes/no data, bit columns for 30
yy. See year date part

Z
zero x (0x) 28, 29, 57
zeros, trailing, in binary datatypes 28–29

Index

232

	Reference Manual Volume 1: Building Blocks
	Adaptive Server Enterprise
	About This Book
	Audience
	How to use this book
	Related documents
	Other sources of information
	Conventions
	Table 1: Font and syntax conventions for this manual
	If you need help

	CHAPTER 1 System and User-Defined Datatypes
	Datatype categories
	Table 1-1: Datatype categories

	Range and storage size
	Table 1-2: Range and storage size for system datatypes

	Declaring the datatype of a column, variable, or parameter
	Declaring the datatype for a column in a table
	Declaring the datatype for a local variable in a batch or procedure
	Declaring the datatype for a parameter in a stored procedure
	Determining the datatype of a literal

	Datatype of mixed-mode expressions
	Determining the datatype hierarchy
	Determining precision and scale
	Table 1-3: Precision and scale after arithmetic operations

	Converting one datatype to another
	Automatic conversion of fixed-length NULL columns
	Table 1-4: Automatic conversion of fixed-length datatypes

	Handling overflow and truncation errors

	Standards and compliance
	Exact numeric datatypes
	Function
	Integer Types
	Table 1-5: Integer datatypes
	Entering integer data
	Table 1-6: Valid integer values
	Table 1-7: Invalid integer values

	Decimal datatypes
	Specifying precision and scale
	Storage size
	Entering decimal data
	Table 1-8: Valid decimal values
	Table 1-9: Invalid decimal values

	Standards and compliance

	Approximate numeric datatypes
	Function
	Understanding approximate numeric datatypes
	Range, precision, and storage size
	Table 1-10: Approximate numeric datatypes

	Entering approximate numeric data
	Values that may be entered by Open Client clients
	Standards and compliance

	Money datatypes
	Function
	Accuracy
	Range and storage size
	Table 1-11: Money datatypes

	Entering monetary values
	Standards and compliance

	Timestamp datatype
	Function
	Creating a timestamp column

	Date and time datatypes
	Function
	Range and storage requirements
	Table 1-12: Transact-SQL datatypes for storing dates and times

	Entering datetime and smalldatetime data
	Entering the date portion of a datetime or smalldatetime value
	Table 1-13: Date formats for datetime and smalldatetime datatypes

	Entering the time portion of a datetime or smalldatetime value
	Display formats for datetime and smalldatetime values
	Table 1-14: Examples of datetime entries

	Finding datetime values that match a pattern
	Manipulating dates

	Standards and compliance

	Character datatypes
	Function
	Length and storage size
	Table 1-15: Character datatypes
	Determining column length with system functions

	Entering character data
	Treatment of blanks
	Manipulating character data
	Standards and compliance

	Binary datatypes
	Function
	Valid binary and varbinary entries
	Entries of more than the max column size
	Treatment of trailing zeroes
	Platform dependence
	Standards and compliance

	bit datatype
	Function
	Entering data into bit columns
	Storage size
	Restrictions
	Standards and compliance

	sysname datatype
	Function
	Using the sysname datatype
	Standards and compliance

	text and image datatypes
	Function
	Defining a text or image column
	How Adaptive Server stores text and image data
	Putting additional pages on another device
	Zero padding
	Effect of partitioning on data storage

	Initializing text and image columns
	Saving space by allowing NULL
	Getting information from sysindexes
	Table 1-16: Storage of text and image data

	Using readtext and writetext
	Determining how much space a column uses
	Restrictions on text and image columns
	Selecting text and image data
	Table 1-17: text and image global variables

	Converting text and image datatypes
	Pattern matching in text data
	Duplicate rows
	Standards and compliance

	User-defined datatypes
	Function
	Creating frequently used datatypes in the model database
	Creating a user-defined datatypes
	Renaming a user-defined datatype
	Dropping a user-defined datatype
	Getting help on datatypes
	Standards and compliance

	CHAPTER 2 Transact-SQL Functions
	Types of functions
	Table 2-1: Types of Transact-SQL functions
	Table 2-2: List of Transact-SQL functions

	Aggregate functions
	Aggregates used with group by
	Aggregate functions and NULL values
	Vector and scalar aggregates
	Example 1
	Example 2
	Example 3

	Aggregate functions as row aggregates

	Datatype conversion functions
	Table 2-3: Explicit, implicit, and unsupported datatype conversions
	Converting character data to a non-character type
	Converting from one character type to another
	Converting numbers to a character type
	Rounding during conversion to and from money types
	Converting date/time information
	Converting between numeric types
	Arithmetic overflow and divide-by-zero errors
	Scale errors
	Domain errors

	Conversions between binary and integer types
	Converting between binary and numeric or decimal types
	Converting image columns to binary types
	Converting other types to bit
	Converting NULL value

	Date functions
	Date parts

	Mathematical functions
	Security functions
	String functions
	Limits on string functions

	System functions
	Text and image functions

	CHAPTER 3 Functions: abs – difference
	abs
	acos
	ascii
	asin
	atan
	atn2
	avg
	ceiling
	char
	Reformatting output with char

	charindex
	char_length
	col_length
	col_name
	compare
	Table 3-1: Collation names and IDs

	convert
	Table 3-2: Display formats for date/time information
	Conversions involving Java classes

	cos
	cot
	count
	curunreservedpgs
	data_pgs
	Accuracy of results
	Errors

	datalength
	dateadd
	datediff
	datename
	datepart
	Table 3-3: Date parts and their values

	db_id
	db_name
	degrees
	difference

	CHAPTER 4 Functions: exp – mut_excl_roles
	exp
	floor
	getdate
	hextoint
	host_id
	host_name
	index_col
	index_colorder
	inttohex
	isnull
	is_sec_service_on
	lct_admin
	license_enabled
	lockscheme
	log
	log10
	lower
	ltrim
	max
	min
	mut_excl_roles

	CHAPTER 5 Functions: object_id – rtrim
	object_id
	object_name
	patindex
	pagesize
	pi
	power
	proc_role
	ptn_data_pgs
	radians
	rand
	replicate
	reserved_pgs
	reverse
	right
	role_contain
	role_id
	role_name
	round
	rowcnt
	rtrim

	CHAPTER 6 Functions: show_role – valid_user
	show_role
	show_sec_services
	sign
	sin
	sortkey
	Collation Tables
	Table 6-1: Collation names and IDs

	soundex
	space
	sqrt
	str
	stuff
	substring
	sum
	suser_id
	suser_name
	syb_sendmsg
	tan
	textptr
	textvalid
	to_unichar
	tsequal
	Timestamping a new table for browsing
	Timestamping an existing table

	uhighsurr
	ulowsurr
	upper
	uscalar
	used_pgs
	user
	user_id
	user_name
	valid_name
	valid_user

	CHAPTER 7 Expressions, Identifiers, and Wildcard Characters
	Expressions
	Table 7-1: Types of expressions used in syntax statements
	Arithmetic and character expressions
	Relational and logical expressions
	Operator precedence
	Arithmetic operators
	Table 7-2: Arithmetic operators

	Bitwise operators
	Table 7-3: Truth tables for bitwise operations
	Table 7-4: Examples of bitwise operations

	String concatenation operator
	Comparison operators
	Table 7-5: Comparison operators

	Nonstandard operators
	Using any, all and in
	Negating and testing
	Ranges
	Using nulls in expressions
	Comparisons that return TRUE
	Difference between FALSE and UNKNOWN
	Using “NULL” as a character string
	NULL compared to the empty string

	Connecting expressions
	Table 7-6: Truth tables for logical expressions

	Using parentheses in expressions
	Comparing character expressions
	Using the empty string
	Including quotation marks in character expressions
	Using the continuation character

	Identifiers
	Tables beginning with # (temporary tables)
	Case sensitivity and identifiers
	Uniqueness of object names
	Using delimited identifiers
	Identifying tables or columns by their qualified object name
	Using delimited identifiers within an object name
	Omitting the owner name
	Referencing your own objects in the current database
	Referencing objects owned by the database owner
	Using qualified identifiers consistently

	Determining whether an identifier is valid
	Renaming database objects
	Using multibyte character sets

	Pattern matching with wildcard characters
	Using not like
	Case and accent insensitivity
	Using wildcard characters
	Table 7-7: Wildcard characters used with like
	The percent sign (%) wildcard character
	The underscore (_) wildcard character
	Bracketed ([]) characters
	The caret (^) wildcard character

	Using multibyte wildcard characters
	Using wildcard characters as literal characters
	Using square brackets ([])as escape characters
	Table 7-8: Using square brackets to search for wildcard characters

	Using the escape clause
	Table 7-9: Using the escape clause

	Using wildcard characters with datetime data

	CHAPTER 8 Reserved Words
	Transact-SQL reserved words
	SQL92 reserved words
	Potential SQL92 reserved words

	CHAPTER 9 SQLSTATE Codes and Messages
	Warnings
	Table 9-1: SQLSTATE warnings

	Exceptions
	Cardinality violations
	Table 9-2: Cardinality violations

	Data exceptions
	Table 9-3: Data exceptions

	Integrity constraint violations
	Table 9-4: Integrity constraint violations

	Invalid cursor states
	Table 9-5: Invalid cursor states

	Syntax errors and access rule violations
	Table 9-6: Syntax errors and access rule violations

	Transaction rollbacks
	Table 9-7: Transaction rollbacks

	with check option violation
	Table 9-8: with check option violation

	Index

