Reference Manual
Volume 1: Building Blocks

Adaptive Server Enterprise

12.5

DOCUMENT ID: 36271-01-1250-01
LAST REVISED: June 2001

Copyright © 1989-2001 by Sybase, Inc. All rights reserved.

This publication pertains to Sybase database management software and to any subsequent release until otherwise indicated in new
editions or technical notes. Information in thisdocument is subject to change without notice. The software described herein is furnished
under alicense agreement, and it may be used or copied only in accordance with the terms of that agreement.

To order additional documents, U.S. and Canadian customers should call Customer Fulfillment at (800) 685-8225, fax (617) 229-9845.

Customers in other countries with a U.S. license agreement may contact Customer Fulfillment viathe above fax number. All other
international customers should contact their Sybase subsidiary or local distributor. Upgrades are provided only at regularly scheduled
software release dates. No part of this publication may be reproduced, transmitted, or translated inany form or by any means, electronic,
mechanical, manual, optical, or otherwise, without the prior written permission of Sybase, Inc.

Sybase, the Sybase logo, ADA Workbench, Adaptable Windowing Environment, Adaptive Component Architecture, Adaptive Server,
Adaptive Server Anywhere, Adaptive Server Enterprise, Adaptive Server Enterprise Monitor, Adaptive Server Enterprise Replication,
Adaptive Server Everywhere, Adaptive Server 1Q, Adaptive Warehouse, AnswerBase, Anywhere Studio, Application Manager,
AppModeler, APT Workbench, APT-Build, APT-Edit, APT-Execute, APT-FORMS, APT-Translator, APT-Library, Backup Server,
ClearConnect, Client-Library, Client Services, Data Pipeline, Data Workbench, DataArchitect, Database Anayzer, DataExpress,
DataServer, DataWindow, DB-Library, dbQueue, Developers Workbench, Direct Connect Anywhere, DirectConnect, Distribution
Director, E-Anywhere, E-Whatever, Embedded SQL, EM S, Enterprise Application Studio, Enterprise Client/Server, Enterprise Connect,
Enterprise Data Studio, Enterprise Manager, Enterprise SQL Server Manager, Enterprise Work Architecture, Enterprise Work Designer,
Enterprise Work Modeler, EWA, Financial Fusion, Financial Fusion Server, Gateway Manager, |mpactNow, InfoMaker, Information
Anywhere, Information Everywhere, InformationConnect, InternetBuilder, iScript, Jaguar CTS, jConnect for JDBC, KnowledgeBase,
MainframeConnect, Maintenance Express, MAP, MDI Access Server, MDI Database Gateway, media.splash, MetaWorks, MySupport,
Net-Gateway, Net-Library, ObjectConnect, ObjectCycle, OmniConnect, OmniSQL Access Module, OmniSQL Toolkit, Open Client,
Open ClientConnect, Open Client/Server, Open Client/Server Interfaces, Open Gateway, Open Server, Open ServerConnect, Open
Solutions, Optima++, PB-Gen, PC APT Execute, PC DB-Net, PC Net Library, Power++, power.stop, PowerAMC, PowerBuilder,
PowerBuilder Foundation Class Library, PowerDesigner, PowerDimensions, PowerDynamo, PowerJ, PowerScript, PowerSite,
PowerSocket, Powersoft, PowerStage, PowerStudio, PowerTips, Powersoft Portfolio, Powersoft Professional, PowerWare Desktop,
PowerWare Enterprise, ProcessAnayst, Report Workbench, Report-Execute, Replication Agent, Replication Driver, Replication Server,
Replication Server Manager, Replication Toolkit, Resource Manager, RW-DisplayLib, RW-Library, S-Designor, SDF, Secure SQL
Server, Secure SQL Toolset, Security Guardian, SKILS, smart.partners, smart.parts, smart.script, SQL Advantage, SQL Anywhere, SQL
Anywhere Studio, SQL Code Checker, SQL Debug, SQL Edit, SQL Edit/TPU, SQL Everywhere, SQL Modeler, SQL Remote, SQL
Server, SQL Server Manager, SQL SMART, SQL Toolset, SQL Server/CFT, SQL Server/DBM, SQL Server SNMP SubAgent, SQL
Station, SQLJ, STEP, SupportNow, Sybase Central, Sybase Client/Server I nterfaces, Sybase Financial Server, Sybase Gateways, Sybase
MPP, Sybase SQL Desktop, Sybase SQL Lifecycle, Sybase SQL Workgroup, Sybase User Workbench, SybaseWare, Syber Financia,
SyberAssist, SyBooks, System 10, System 11, System X| (logo), SystemTools, Tabular Data Stream, Transact-SQL, Translation Toolkit,
UNIBOM, Unilib, Uninull, Unisep, Unistring, URK RuntimeKit for UniCode, Viewer, Visual Components, Visual Speller, Visual Writer,
VQL, WarehouseArchitect, Warehouse Control Center, Warehouse Studio, Warehouse WORK S, Watcom, Watcom SQL., Watcom SQL
Server, Web Deployment Kit, Web.PB, Web.SQL, WebSights, WebViewer, WorkGroup SQL Server, XA-Library, XA-Server and XP
Server are trademarks of Sybase, Inc. 3/01

Unicode and the Unicode L ogo are registered trademarks of Unicode, Inc.
All other company and product names used herein may be trademarks or registered trademarks of their respective companies.

Use, duplication, or disclosure by the government is subject to therestrictions set forth in subparagraph (c)(1)(ii) of DFARS 52.227-
7013 for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., 6475 Christie Avenue, Emeryville, CA 94608.

Contents

About This Book

CHAPTER 1

.. Xi
System and User-Defined Datatypescoccvvcvvevieieiieee v eeincnnns 1
Datatype CAtEQONIES ...eeiueeeuieeaiiieaiieatieesieeeaieeeeeeeanseeeseeeeseeeaneeenneas 2
Range and StOrage SiZ€cccvvveeiieeii i e 2
Declaring the datatype of a column, variable, or parameter............. 4
Declaring the datatype for a column in atable...............c.......... 4
Declaring the datatype for a local variable in a batch or procedure
5
Declaring the datatype for a parameter in a stored procedure.. 5
Determining the datatype of a literal............occcovvvveeeiiiiiiinnennn. 5
Datatype of mixed-mode eXpresSionS.........cveeeeeccivvieeeeeeessiiineeeeenn 6
Determining the datatype hierarchyccccoovvveeiiiniiiinnn.n. 6
Determining precision and scalecccccceevvivvieeeee s 7
Converting one datatype to another..........ccccccvveeeiiicciiiicce e, 8
Automatic conversion of fixed-length NULL columns................ 8
Handling overflow and truncation errors..........ccccccveeeeeeiicvvnnnn.. 9
Standards and COMPlIANCEe............uvvieiieiiiiii e 10
EXact NUMENC datatyPes........oouvvvieiieeiiiiiiiieeee e 11
FUNCHION ..ot 11
INEEGET TYPES .ttt eeeeeeeeenneees 11
Decimal datatyPesS.......coovvuiiiiiiiieei e 12
Standards and complianCecccccvviiiiiiiinieniiiee e 14
Approximate NUMEriC datatyPesS.........ovvvvrieeiieeiiiiiiieeeee e 14
FUNCHION ..ot 14
Understanding approximate numeric datatypes...................... 14
Range, precision, and storage Sizecccccceevvvvvveeeeeeeesiennn, 15
Entering approximate numeric dataccccvvvvveeeeeeeinnnnnn. 16
Values that may be entered by Open Client clients 16
Standards and complianCe.........cccceeevivciiiieenie e 16
MONEY JAtatYPESoiieveeeee et 17
FUNCHION ..ottt 17
ACCUIBCY ..ttt ettt ettt ettt e e e e et e e e e e e e e aeeeeees 17
Range and Storage Sizeccccovevviiiiiiieiie e 17

Contents

Entering monetary Values...........covuvvviieiiee i 17
Standards and COmMPplianCe...........ooovvvieeiieiiniiiiiie e, 18
TiMeStamp datatyPe.....ccoviiviiiiee i 18
FUNCHION. ...t 18
Creating a timestamp CoOluMN..........ccccoiie i, 18
Date and time datatypPesvvvvieeeeeiiiiiiiiiee e 19
FUNCHION. ...t 19
Range and storage requirements.........cccccoecvvvveveeeeeessvvneennn. 19
Entering datetime and smalldatetime data................ccccvveeenn.. 19
Standards and CoOmMPplianCe...........ooovuvviieiieiiniiiiiie e, 23
Character datatyPes........uvvveeeiiiiiiiiiiiee e 24
FUNCHION. ...t 24
Length and Storage SiZ€ccceeviiiiiiiieiiee e 24
Entering character data............ooevvvviiiiiiiiiniiiiee i 25
Treatment of blanks...........cooiiii 26
Manipulating character data.............ccccceeeeeeiiciviieeree e, 27
Standards and complianCe............coccvvveeiieeiiiiiiieee e 27
Binary datatyPesuvveiiieiiiiiiiiiie et 27
FUNCHION. ...t 27
Valid binary and varbinary entries...........ccccvvveeeeiiiiiiiiieee e 28
Entries of more than the max column sizeccccceevieeens 28
Treatment of trailing ZEroes........cccccovviiiiiiiiiie e 28
Platform dependenceccccovvviiiiiiiiiie e 29
Standards and cCOmMPplianCe..........cooovvviieiieein i 30
DIt dAtatYPe....evveeeeie e 30
FUNCHION. ...ttt 30
Entering data into bit COluMNSevveviiiiiiii e, 30
STOTAQE SIZE ..ieeei ittt e e e e a e e e e 30
RESHICHONS. ...ceiiiiiei et 31
Standards and complianCe.............occvvveeiieeiiiiiiiieee e 31
SYSNAME AAtatYPEccoiieiiiiie et e e 31
FUNCHION. ...t 31
Using the sysname datatypecccvveeeeeeiiiiiiiieenee e, 31
Standards and COmMPplianCe...........ooovuvviieiieiiniiiiie e, 31
text and image datatypPesccoviiviiiiiiiie e 32
FUNCHION. ...ttt 32
Defining a text or image Column.........ccccceeviiiiiiieniee i, 32
How Adaptive Server stores text and image data.................... 33
Initializing text and image COlUMNS...........ccccvveeiieeniiniiiiieee, 33
Saving space by allowing NULL...........ccccccovviiiiiieeee e, 34
Getting information from SySiNdeXes...........ccccuvvvvveeeeeeicivvennnn. 34
Using readtext and WriteteXt.........ooccuvvreeeieeeiiiiiieer e, 35
Determining how much space a column uses............ccceee.e.... 35
Restrictions on text and image columns...........ccccccoevvvvveennnnn. 36

Contents

Selecting text and image data............ccccceveeeeeiiciiiieeee e, 36
Converting text and image datatypes.........ccceeevvvvvveeeeeeeciennen, 37
Pattern matching in text data...........cccccceeeeee i, 37
DUPIICALE TOWS ...evviiiieiiiiiiiiiee ettt e 38
Standards and COmMpPlianCe..........cccccoeviiiiiiiienieen e 38
User-defined datatypesooviiiiiiiieeiiiiiiiiicce e 38
FUNCHION. ... e 38
Creating frequently used datatypes in the model database 38
Creating a user-defined datatypescccccceevvviviiiieeeeinniinnne, 39
Renaming a user-defined datatypeccccvvvvveeeeeeiciiinnnnnnn. 39
Dropping a user-defined datatypeccccoevvvvvveeeeeniiiviieennnn. 39
Getting help on datatypesccccceveeeviiiiiiiieeee e 39
Standards and complianCe..........cccceeiiiiviiieniee e 40
CHAPTER 2 Transact-SQL FUNCLIONSoooeiiiiiiiiie e 41
TYPES Of FUNCHONS ..vvveiie e 41
Aggregate fUNCLIONSccviiiiiiee e 45
Aggregates used with group bycccoviiiiiiiiiiiiiiiiiceeeee 46
Aggregate functions and NULL values..........c.cccoviiiiiieeennnns 46
Vector and scalar aggregatescccevvviviiiieeee i 46
Aggregate functions as row aggregates........cccccvvvvvveeeerernnnnns 49
Datatype conversion fuNCHONScoovviiiieiieeniiiieee e 51
Converting character data to a non-character type.................. 53
Converting from one character type to another....................... 53
Converting numbers to a character typeccccccvveeeeeecinnnee, 54
Rounding during conversion to and from money types........... 54
Converting date/time informationccccceee e, 55
Converting between NUMErIC tYPeScvvvvveeeeeviiciiiieeeee e 55
Arithmetic overflow and divide-by-zero errors..........ccccccc... 55
Conversions between binary and integer typescccccceeuvee 57
Converting between binary and numeric or decimal types...... 58
Converting image columns to binary typescccccccevvviiivneen. 58
Converting other types to Ditcccooiviiii s 58
Converting NULL ValUEocuviiieiiiiiiiiiienee e 59
DaAte fUNCHIONS ...eeiiiiieieiiece e 59
DAtE PAIS ...eeeeieeeeeeiiiieieeeeee ettt 59
Mathematical fuNCtioNScooiiiiii e 60
SeCUrity fFUNCHONS ..o 62
SHrNG FUNCHONS ..veveiieccccce e 62
Limits on string funCtioNS ..o 63
SYStEM fUNCLONScooiiiiie e 64
Text and image fUNCLONScvvieiiiiie e 65

Contents

CHAPTER 3 Functions: abs — differencecocoececceiiii, 67
A0S 67
L2 (o 0 L J PP P PP PP PPPPPPPPPPPPP 67
BISCHl 1uvvvrteet e e e et e e e e e r et e e e e e e abrae s 68
=T 1 SO SSPR 69
== 1 o [P 70
= L1 PP 70
L= 1Yo LU PURRRPUPPPPPNE 71
(o7 =111 o SO SRPR 73
(o3 - | SO PSPPR 74
CRAINAEX ...ttt 76
Char_length ... 77
COLIBNGLN .. 78
COl NAME....ceiieeeeeeeeeeee e 79
(o70] 101 oF= T (=S PP PP PPPPPPPPPPPPI 80
(o70] 0 1V7=T o PP PP PP PP PPPPPPPPPPPPP 82
(o 01 PP 86
o 0 PP 87
{00 | PP 88
CUMUNTESEIVEAPUS ©vvveeeiiiuriiiieeeeeiiiirreieeeeeessssnseeesessssssnseeeasessnsssnnnes 89
(o Fo Y - T oo 1O ESPPR 90
datalengthoviiiiie 92
AtEAd ..o 93
atediff ..o 94
JALENAIME ..o e e 96
(0 Eo 1 (=T o= T TP PPPR 97
(o o o TP UP S PTUPPPRPPR 100
(o] o T 1 1= 12 1= N 101
(o (<o =TT USSP 102
QIffEIENCE oo 103

CHAPTER 4 Functions: exp —mut_excl_rolescoccciiieiiiiiiiee s 105
L= o PRSPPI 105
FlOOT e 105
[0 <] (o F= L (= 3PS UU PRSP 107
NEXTOINT. ...t e e e e e e 108
NOSE ..., 108
host_ Name ... 109
INAEX_COl .o 110
INAEX_COIOMdEr ... 111
INEEONEX. ..ot 112
ISNIUIL L e e 112
IS_SEC_SEIVICE _ON....iuvivieeieeeiiitireeeeeeeasitnrreeaeesaasssnnaseaaeeeannnnnees 113
Fox = o [0 11 o PSPPSRt 114

Vi

Contents

license_enabled ... 117
IOCKSCNEME ...iiiiiie et 118
oo O PREPPRP 118
JOGL0 i 119
JOWVT ..ttt 120
TEIY e 120
00T VPO P PP PPP 121
0011 TP PP PPRRTP PP 122
MUL_EXCl_roleS ..., 124
CHAPTER 5 Functions: object_id — rtrim.......cccooviiiieiiee e 125
(o] o] [=Tox A [PSR UP SO PRRPPR 125
(o] o] [=Tox a1 7= 11 1 [T OSSR PPPR 126
PALINAEX. ...t e e e e a e e 126
PAGESIZE ...ttt e e aa e e 129
o OO PEPPR 130
POWET ... 130
PrOC_TOl ..t e 131
o1 Je F= = o1 [T PP PP PP PPPPPPRTOt 132
TAOIANS .ttt e et 133
L7210 Lo PR P P PURRP PP 134
TEPIICALE ... ittt 135
TESEIVEU_PUS trveetieeiiiiiiiiiee e sttt e e e s e st e e e e s s st e e e e s e snnenees 136
TEVEISE .. i 137
T | SO PREPP 138
0] (ST oTo] o - 1 o OO PREPRP 139
0] T T OSSP 140
(0] (ST F= 10 1 - PSPPSRt 141
£ 18] o SO PREPPR 142
FOWGCIIE. .ttt e e e e e e e 143
L]0 PP PP PP PP PPPT 144
CHAPTER 6 Functions: show_role —valid_USerccccceeviiiiiiiiiiiii, 147
] 1011V (0] [P 147
SNOW_SEC _SEIVICES ...cvvviiiiiiiiieeeeeeeeeeeeeeeeeeeeeee et 148
L] | PP PUU R PTTPPPPPPPRN 148
]| PO PP PPTPPPPRPPT 149
SONTKEY .ttt 150
£ 18] [0 [RO PRRPP 154
] L= Tod = TSP UPPPPPPIN 154
ST | USSP UPPUPPPINY 155
L] 1 PP 156
L] 10| 1 O SUU PRSP 157

Vii

Contents

S0 01511] o o PP UU T PTTPPPPPPPR 159
] 0 PP PPTPPPPTPP 160
S0 EST=] o PO PP 162
SUSET_NAIMIE .eeieeiiieeeseeeennes 162
SYD_SENAMSY ..eiiiiiiiie e 163
B8N e e e e aeeas 164
LS4 o PR 165
EEXEVAIIT ...t 166
(o T U {1 o3 - S PPRR 167
ESEQUAL ...ttt 167
UNIGRSUIT o 169
UIOWSUIT ..ttt e e e e e 170
UPPEY < e 171
USCAIAN ..ottt 171
(FEY=To I oo [SO PP PP PPPPPPPRTOt 172
USBI i 174
UL =T o PRSP 174
USEI_NAITIE ettt ettt e e e e et et e e e e e e eeaana e e e e e e e eeanannaeeas 175
Valid_NAME ..o 176
VAl _USET ceiiiiii et 177
CHAPTER 7 Expressions, Identifiers, and Wildcard Characters.................. 179
o] =111 (o] o = TS PR 179
Arithmetic and character eXpressionscccccceevvvvivineeeeeenn. 180
Relational and logical eXpressionsS..........oocvvveveeeeeiiniivieeeenn. 180
Operator PreCeUENCEvvvviiiieeiiiiiieiiee e 180
ArthmetiC OPEratorscvvveiiiiiiiiiie e 181
BitWiSE OPEIratOrS......cceiiuiiiiiieee et 181
String concatenation OPeratorcccvvvevieeeviiiiiieeeeee s 183
CompariSON OPErALOrS........uvvvireeeeeeeiiiiireeeeeeeeirrreeeeeeeesnnenees 183
Nonstandard OPEerators.ccccoeevvvrireeeeeeeiiiriee e e e e essareeeeens 184
Using any, all and in.........cccoeeeiiiiiiiiiiee e 185
Negating and testingcceeeiiiiiiiiiiee e 185
RANGES . 185
Using NUIIS iN @XPreSSIONS.......ccoviivviiieeeee e e e 185
CoNNECHING EXPrESSIONSuvvviieeiiee e iiiiiieee e e e s 187
Using parentheses in eXpressionsoovvvveeeeeeeeeniivneeeeenn 188
Comparing character eXpressions.cccevvvvvveeeeeeeeenneenen 188
Using the empty String........ccccooiviiiiiiiieeiiiiiiiice e 189
Including quotation marks in character expressions 189
Using the continuation character.........ccccccovvcvvieerieeniniiiieenn, 190
IAENEFIEIS ... 190
Tables beginning with # (temporary tables)ccc......... 190
Case sensitivity and identifiers..........cccoveviee i iiciieeece e, 191

viii

Contents

CHAPTER 8

CHAPTER 9

Uniqueness of 0bject NAMESooocvviieiiee e 191

Using delimited identifiersccccccoovicviiieriee e 191
Identifying tables or columns by their qualified object name. 192
Determining whether an identifier is valid...............ccccveeenn. 194
Renaming database ObjJects..........ccccccceeeiviiiiiieei i, 194

Using multibyte character Setsccccvveeeiiviiiiiiiiee e, 195

Pattern matching with wildcard characters............ccccccoovvviinnennn. 195
USING NOL TIKE ... 196

Case and accent iINSENSILIVILYeoveeeriiiiiiiieniee e 197

Using wildcard charactersccccccoeecuviiieriee e 197

Using multibyte wildcard characters.............cccoccvvvveeeeeeiinnns 199

Using wildcard characters as literal characters..................... 199

Using wildcard characters with datetime data....................... 201
RESErved WOrdS.......ceeiiiiiiiiie it 203
Transact-SQL reserved Wordscccoooeeeeieiiieeieieeeeeeeeeeeeeeeeeeenn, 203
SQLI2 reserved WOIASooovviiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeees 205
Potential SQL92 reserved WOrdscoooeeeeieiiieeeciieeceeeeeeeeeeeeeen 207
SQLSTATE Codes and MeSSagesccccuvrvrrerrieeieaeeeeeiiiiiieeieen 211
WAININGS .eeiiiiiiiei it e e aeeeas 211
EXCEPLIONS. ..eiiiieiiitite ittt 212
Cardinality VIOIatioNSccooviiiiiiiiiiieeiiiiin e 212

Data EXCEPLIONS. .. .cviiiiiiiiiiiee ettt te e e 212

Integrity constraint violations ..., 213

Invalid CUrsOr Statescooueeiiiiiiie e 214

Syntax errors and access rule violations.............cccccvvveeeeenns 215
Transaction rollbacks ..., 216

with check option violation.............ccccvvcvieei i, 216
.. 217

About This Book

Audience

How to use this book

The Adaptive Server Reference Manual is afour-volume guide to
Sybase® Adaptive Server™ Enterpriseand the Transact-SQL® language.

Volume 1, “Building Blocks,” describes the “parts’ of Transact-SQL:
datatypes, built-in functions, expressions and identifiers, reserved words,
and SQL STATE errors. Beforeyou can use Transact-SQL sucessfully, you
need to understand what these building blocks do and how they affect the
results of Transact-SQL statements.

Volume 2, “Commands,” provides reference information about the
Transact-SQL commands, which you use to create statements.

Volume 3, “Procedures’ provides reference information about system
procedures, catalog stored procedures, extended stored procedures, and
dbcc stored procedures. All procedures are created using Transact-SQL
Statements.

Volume 4, “ System Tables,” provides reference information about the
system tables, which storeinformation about your server, databases, users,
and other detailsof your server. It providesinformation about thetablesin
the dbccdb and dbccalt databases.

The Adaptive Server Reference Manual isintended as areferencetool for
Transact-SQL users of all levels.

» Chapter 1, “ System and User-Defined Datatypes,” which describes
the system and user-defined datatypesthat are supplied with Adaptive
Server and indicates how to use them to create user-defined
datatypes.

» Chapter 2, “Transact-SQL Functions,” lists the Adaptive Server
functions in atable that provides the name and a brief description.
Click on afunction name in the table to go directly to the function.

e Chapter 3 through Chapter 6 provide manual pagesfor theindividual
functions.

» Chapter 7, “Expressions, Identifiers, and Wildcard Characters,”
which provides information about using the Transact-SQL language.

Xi

Related documents

Xii

Chapter 8, “Reserved Words,” which provides information about the
Transact-SQL and SQL 92 keywords.

Chapter 9, “ SQLSTATE Codes and Messages,” which contains
information about Adaptive Server’'s SQLSTATE status codes and the
associated messages.

The following documents comprise the Sybase Adaptive Server Enterprise
documentation:

The release bulletin for your platform — contains last-minute information
that was too late to be included in the books.

A more recent version of the release bulletin may be available on the
World Wide Web. To check for critical product or document information
that was added after the release of the product CD, use the Sybase
Technical Library.

The Installation Guidefor your platform —describesinstallation, upgrade,
and configuration procedures for all Adaptive Server and related Sybase
products.

Configuring Adaptive Server Enterprise for your platform — provides
instructions for performing specific configuration tasks for Adaptive
Server.

What's New in Adaptive Server Enterprise? — describes the new features
in Adaptive Server version 12.5, the system changes added to support
those features, and the changes that may affect your existing applications.

Transact-SQL User’s Guide — documents Transact-SQL, Sybase's
enhanced version of the relational database language. This manual serves
as atextbook for beginning users of the database management system.
This manual also contains descriptions of the pubs2 and pubs3 sample
databases.

System Administration Guide — provides in-depth information about
administering servers and databases. This manual includes instructions
and guidelines for managing physical resources, security, user and system
databases, and specifying character conversion, international language,
and sort order settings.

Reference Manual —contains detailed information about all Transact-SQL
commands, functions, procedures, and datatypes. This manual also
contains alist of the Transact-SQL reserved words and definitions of
system tables.

About This Book

Performance and Tuning Guide — explains how to tune Adaptive Server
for maximum performance. This manual includes information about
database design issuesthat affect performance, query optimization, how to
tune Adaptive Server for very large databases, disk and cache issues, and
the effects of locking and cursors on performance.

The Utility Guide—documentsthe Adaptive Server utility programs, such
asisql and bcp, which are executed at the operating system level.

The Quick Reference Guide — provides a comprehensive listing of the
names and syntax for commands, functions, system procedures, extended
system procedures, datatypes, and utilities in a pocket-sized book.
Available only in print version.

The System Tables Diagram —illustrates system tables and their entity
relationships in a poster format. Available only in print version.

Error Messages and Troubleshooting Guide — explains how to resolve
frequently occurring error messages and describes solutions to system
problems frequently encountered by users.

Component Integration Services User’s Guide — explains how to use the
Adaptive Server Component Integration Services feature to connect
remote Sybase and non-Sybase databases.

Javain Adaptive Server Enterprise—describeshow toinstall and use Java
classes as datatypes, functions, and stored procedures in the Adaptive
Server database.

Using Sybase Failover in a High Availability System— provides
instructions for using Sybase's Failover to configure an Adaptive Server
as acompanion server in ahigh availability system.

Using Adaptive Server Distributed Transaction Management Features—
explains how to configure, use, and troubleshoot Adaptive Server DTM
features in distributed transaction processing environments.

EJB Server User’s Guide — explains how to use EJB Server to deploy and
execute Enterprise JavaBeans in Adaptive Server.

XA Interface Integration Guide for CICS, Encina, and TUXEDO —
providesinstructions for using Sybase’'s DTM XA interface with X/Open
XA transaction managers.

Glossary — defines technical terms used in the Adaptive Server
documentation.

Xiii

Other sources of
information

Conventions

Xiv

Sybase jConnect for JDBC Programmer’s Reference — describes the
jConnect for JDBC product and explainshow to useit to access data stored
in relational database management systems.

Full-Text Search Specialty Data Sore User’s Guide—describes how to use
the Full-Text Search feature with Verity to search Adaptive Server
Enterprise data.

Historical Server User’s Guide —describes how to use Historical Server to
obtain performance information for SQL Server and Adaptive Server.

Monitor Server User’s Guide — describes how to use Monitor Server to
obtain performance statistics from SQL Server and Adaptive Server.

Monitor Client Library Programmer’s Guide — describes how to write
Monitor Client Library applications that access Adaptive Server
performance data.

Use the Sybase Technical Library CD and the Technical Library Product
Manuals Web site to learn more about your product:

Technical Library CD contains product manuals and isincluded with your
software. The DynaText browser (downloadable from Product Manuals at
http://www.sybase.com/detail/1,3693,1010661,00.html) allowsyouto access
technical information about your product in an easy-to-use format.

Refer to the Technical Library Installation Guide in your documentation
package for instructions on installing and starting the Technical Library.

Technical Library Product Manuals Web site isan HTML version of the
Technical Library CD that you can access using a standard Web browser.
In addition to product manuals, you will find links to the Technical
Documents Web site (formerly known as Tech Info Library), the Solved
Cases page, and Sybase/Powersoft newsgroups.

To access the Technical Library Product Manuals Web site, go to Product
Manuals at http://www.sybase.com/support/manuals/.

The following sections describe conventions used in this manual.

SQL isafree-formlanguage. There are no rules about the number of wordsyou
can put on aline or where you must break aline. However, for readability, all
examples and most syntax statementsin this manual are formatted so that each
clause of astatement beginsonanew line. Clausesthat have morethan one part
extend to additional lines, which are indented. Complex commands are
formatted using modified Backus Naur Form (BNF) notation.

Table 1 showsthe conventionsfor syntax statementsthat appear in thismanual :

About This Book

Table 1: Font and syntax conventions for this manual

Element Example

Command names, command options, utility select
names, utility options, and other keywordsare sp_configure
bold.

Database hames, datatypes, file names and master database
path names arein italics.

Variables, or words that stand for values that sel ect col umm_nane
youfill in, areinitalics. fromtabl e_nane
where search_conditions
Type parentheses as part of the command. comput e row_aggr egat e (col um_nane)

Double colon, equals sign indicates that the n=
syntax iswrittenin BNF notation. Do not type
this symbol. Indicates “is defined as”.

Curly braces mean that you must choose at {cash, check, credit}
least one of the enclosed options. Do not type
the braces.

Brackets mean that to choose one or more of [cash | check | credit]
the enclosed optionsis optional. Do not type
the brackets.

The comma means you may choose as many cash, check, credit
of the options shown as you want. Separate

your choices with commas as part of the

command.

The pipe or vertical bar(]) means you may cash | check | credit
select only one of the options shown.

An élipsis(...) means that you can repeat the buy thing = price [cash | check | credit]

last unit as many times asyou like. [, thing = price [cash | check | credit]]...
You must buy at |east onething and giveitsprice. You may choose
amethod of payment: one of theitems enclosed in square brackets.
You may also choose to buy additional things: as many of them as
you like. For each thing you buy, give its name, its price, and
(optionally) a method of payment.

e Syntax statements (displaying the syntax and all options for a command)
appear as follows:

sp_dropdevice [device_name]
or, for acommand with more options:

select column_name
from table_name
where search_conditions

XV

In syntax statements, keywords (commands) are in normal font and
identifiersare in lowercase. Italic font shows user-supplied words.

e Examples showing the use of Transact-SQL commands are printed like
this:
sel ect * from publishers

« Examples of output from the computer appear as follows:

pub_nane city state
New Age Books Bost on VA
Bi nnet & Hardl ey Washi ngt on DC
Al godat a | nfosystens Ber kel ey CA

(3 rows affected)

If you need help

XVi

In this manual, most of the examples are in lowercase. However, you can
disregard case when typing Transact-SQL keywords. For example, SELECT,
Select, and select are the same.

Adaptive Server’s senditivity to the case of database objects, such astable
names, depends on the sort order installed on Adaptive Server. You can change
case sensitivity for single-byte character sets by reconfiguring the Adaptive
Server sort order. For more information, see the System Administration Guide.

Each Sybase installation that has purchased a support contract has one or more
designated people who are authorized to contact Sybase Technical Support. I
you cannot resolve a problem using the manual s or online help, please have the
designated person contact Sybase Technical Support or the Sybase subsidiary
inyour area.

CHAPTER 1

System and User-Defined
Datatypes

This chapter describesthe Transact-SQL datatypes. Datatypes specify the
type, size, and storage format of columns, stored procedure parameters,
and local variables. Topics covered are:

Datatype categories

Range and storage size

Declaring the datatype of acolumn, variable, or parameter
Datatype of mixed-mode expressions
Converting one datatype to another
Standards and compliance

Exact numeric datatypes
Approximate numeric datatypes
Money datatypes

Timestamp datatype

Date and time datatypes

Character datatypes

Binary datatypes

bit datatype

sysname datatype

text and image datatypes
User-defined datatypes

Datatype categories

Datatype categories

Adaptive Server provides several system datatypes and the user-defined
datatypes timestamp and sysname. Table 1-1 lists the categories of
Adaptive Server datatypes. Each category is described in a section of this
chapter.

Table 1-1: Datatype categories

Category Used for

Exact numeric datatypes Numeric values (both integers and numbers with a decimal portion)
that must be represented exactly

Approximate numeric datatypes Numeric datathat can tolerate rounding during arithmetic operations

Money datatypes Monetary data

Timestamp datatype

Tables that are browsed in Client-Library™ applications

Date and time datatypes

Date and time information

Character datatypes Strings consisting of letters, numbers, and symbols

Binary datatypes Raw binary data, such as pictures, in a hexadecimal-like notation
bit datatype True/false and yes/no type data

sysname datatype System tables

text and image datatypes

Printable characters or hexadecimal-like data that requires more than
the maximum column size provided by you server’slogical page size.

User-defined datatypes

Defining objects that inherit the rules, default, null type, IDENTITY
property, and base datatype

Range and storage size

Table 1-2 lists the system-supplied datatypes and their synonyms and
provides information about the range of valid values and storage size for
each. For simplicity, the datatypes are printed in lowercase characters,
although Adaptive Server alowsyou to use either uppercase or lowercase
characters for system datatypes. User-defined datatypes, such as
timestamp, are case sensitive. Most Adaptive Server-supplied datatypes
are not reserved words and can be used to name other objects.

Table 1-2: Range and storage size for system datatypes

Datatypes Synonyms Range Bytes of storage

Exact numeric datatypes

CHAPTER 1 System and User-Defined Datatypes

Datatypes Synonyms Range Bytes of storage

tinyint 0to 255 1

smallint -215(-32,768) to 215 "1 (32,767) 2

int integer -231 (-2,147,483,648) to 4
231 .1 (2,147,483,647)

numeric (p, s) -10%8t0 10%8-1 2t017

decimal (p, s) dec -10%81t010%8-1 2to 17

Approximate numeric datatypes

float (precision) M achine dependent 4o0r8

double precision M achine dependent 8

real M achine dependent 4

Money datatypes

smallmoney -214,748.3648 to 214,748.3647 4

money -922,337,203,685,477.5808 to 8
922,337,203,685,477.5807

Date/time datatypes

smalldatetime January 1, 1900 to June 6, 2079 4

datetime January 1, 1753 to 8
December 31, 9999

Character datatypes

char(n) character Determined by the maximum columsize n
for your server'slogical page size

varchar(n) char[acter] varying Determined by the maximum colum size actua entry length
for your server’slogical page size

unichar Unicode character Determined by the maximum colum size n*@@unicharsize
for your server’slogical page size (@@unicharsize

equals 2)

univarchar unichar(acter) varying Determined by the maximum colum size actual number of

for your server’slogical page size characters
*@ @unicharsize

nchar(n) national char[acter] Determined by the maximum columsize n* @@ncharsize
for your server’slogical page size

nvarchar(n) nchar varying, national Determined by the maximum columsize n

char[acter] varying

for your server’slogical page size

Binary datatypes
binary(n)

varbinary(n)

Determined by the maximum colum size
for your server’slogical page size

Determined by the maximum colum size
for your server’slogical page size

n
actua entry length

Bit datatype

Declaring the datatype of a column, variable, or parameter

Datatypes Synonyms Range Bytes of storage

bit Oorl 1 (1 byteholdsupto 8
bit columns)

Text and image datatypes

text Pt (2,147,483,647) bytes or fewer Ountil initialized, then
amultiple of the
logical page size

image Pt (2,147,483,647) bytes or fewer Ountil initialized, then
amultiple of the
logical page size

Declaring the datatype of a column, variable, or
parameter

You must declare the datatype for a column, local variable, or parameter.
The datatype can be any of the system-supplied datatypes or any user-
defined datatype in the database.

Declaring the datatype for a column in a table

Use the following syntax to declare the datatype of anew columnin a
create table or an alter table statement:

create table [[database.Jowner.]table_name
(column_name datatype [identity | not null | null]
[, column_name datatype [identity | not null |
null]]...)

alter table [[database.]owner.]table_name
add column_name datatype [identity | null
[, column_name datatype [identity | null]...

For example:

create table sales_daily
(stor_id char(4)not null,
ord_num nuneric(10,0)identity,
ord_ant money null)

CHAPTER 1 System and User-Defined Datatypes

Declaring the datatype for a local variable in a batch or procedure

Use the following syntax to declare the datatype for alocal variablein a
batch or stored procedure;

declare @variable_name datatype
[, @variable_name datatype]...

For example:

decl are @uope noney

Declaring the datatype for a parameter in a stored procedure

Usethefollowing syntax to declare the datatype for aparameter in astored
procedure:

create procedure [owner.]Jprocedure_name [;number]
[[((@parameter_name datatype [= default] [output]
[,@parameter_name datatype [= default]

[output]]...D]]
[with recompile]
as SQL_statements

For example:

create procedure aunane_sp @unane varchar (40)
as
select au_ | nane, title, au_ord
fromauthors, titles, titleauthor
where @unane = au_l nane
and authors.au_id = titleauthor.au_id
and titles.title_id = titleauthor.title_id

Determining the datatype of a literal

You cannot declare the datatype of aliteral. Adaptive Server treats al
character literas as varchar. Numeric literals entered with E notation are
treated asfloat; all others are treated as exact numerics:

« Literals between 23! - 1 and -231 with no decimal point are treated as
integer.

Datatype of mixed-mode expressions

e Literalsthat include adecimal point, or that fall outside the range for
integers, are treated as numeric.

Note To preserve backward compatibility, use E notation for numeric
literals that should be treated asfloat.

Datatype of mixed-mode expressions

When you perform concatenation or mixed-mode arithmetic on values
with different datatypes, Adaptive Server must determine the datatype,
length, and precision of the result.

Determining the datatype hierarchy

Each system datatype has a datatype hierarchy, which is stored in the
systypes system table. User-defined datatypesinherit the hierarchy of the
system datatype on which they are based.

The following query ranks the datatypes in a database by hierarchy. In
addition to the information shown below, your query results will include
information about any user-defined datatypes in the database:

sel ect nane, hi erarchy

from systypes

order by hierarchy

name hi erarchy
floatn 1
fl oat 2
datetimm 3
datetine 4
r eal 5
nunericn 6
nuneric 7
deci mal n 8
deci nal 9
nmoneyn 10
noney 11
smal | money 12
smal | dat eti ne 13

CHAPTER 1 System and User-Defined Datatypes

intn 14
int 15
smal | i nt 16
tinyint 17
bi t 18
uni var char 19
uni char 20
reserved 21
var char 22
sysnanme 22
nvar char 22
char 23
nchar 23
var bi nary 24
ti mestanp 24
bi nary 25
t ext 26
i mge 27

(28 rows affected)

The datatype hierarchy determines the results of computations using
valuesof different datatypes. Theresult valueisassigned the datatype that
is closest to the top of thelist.

In the following example, gty from the sales table is multiplied by royalty
from the roysched table. gty is asmallint, which has a hierarchy of 16;
royalty isanint, which hasahierarchy of 15. Therefore, the datatype of the
result isan int.

smallint(qgty) * int(royalty) = int

Determining precision and scale

For numeric and decimal datatypes, each combination of precision and
scaleisadistinct Adaptive Server datatype. If you perform arithmetic on
two numeric or decimal values:

* nlwith precision p1 and scale s1, and
* n2with precision p2 and scale n2

Adaptive Server determinesthe precision and scal e of theresults as shown
in Table 1-3:

Converting one datatype to another

Table 1-3: Precision and scale after arithmetic operations

Operation Precision Scale

nl+n2 max(sl, s2) + max(pl-sl, p2-s2) +1 max(sl, s2)

nl-n2 max(sl, s2) + max(pl-sl, p2-s2) +1 max(sl, s2)

nl* n2 sl+s2+ (pl-sl)+(p2-s2) +1 sl+s2

nl/n2 max(sl +p2+1,6) +pl-sl+p2 max(sl + p2-s2 + 1, 6)

Converting one datatype to another

Many conversionsfrom one datatype to another are handled automatically
by Adaptive Server. These are called implicit conversions. Other
conversions must be performed explicitly with the convert, inttohex, and
hextoint functions. See “ Datatype conversion functions’ for details about
datatype conversions supported by Adaptive Server.

Automatic conversion of fixed-length NULL columns

Only columns with variable-length datatypes can store null values. When
you create aNULL column with afixed-length datatype, Adaptive Server
automatically convertsit to the corresponding variable-length datatype.
Adaptive Server does not inform the user of the datatype change.

Table 1-4 lists the fixed- and variable-length datatypes to which they are
converted. Certain variable-length datatypes, such asmoneyn, arereserved
datatypes; you cannot use them to create columns, variables, or
parameters:

CHAPTER 1 System and User-Defined Datatypes

Table 1-4: Automatic conversion of fixed-length datatypes

Original Fixed-Length Datatype

Converted To

char varchar
unichar univarchar
nchar nvarchar
binary varbinary
datetime datetimn
float floatn

int, smallint, and tinyint intn
decimal decimaln
numeric numericn
money and smallmoney moneyn

Handling overflow and truncation errors

The arithabort option determines how Adaptive Server behaves when an
arithmetic error occurs. Thetwo arithabort options, arithabort arith_overflow
and arithabort numeric_truncation, handle different types of arithmetic
errors. You can set each option independently, or set both options with a
single set arithabort on or set arithabort off statement.

arithabort arith_overflow specifiesbehavior following adivide-by-zero
error or aloss of precision during either an explicit or an implicit
datatype conversion. Thistype of error is considered serious. The
default setting, arithabort arith_overflow on, rolls back the entire
transaction in which the error occurs. If the error occursin abatch that
does not contain atransaction, arithabort arith_overflow on doesnot rol|
back earlier commands in the batch, but Adaptive Server does not
execute any statements that follow the error-generating statement in
the batch.

If you set arithabort arith_overflow off, Adaptive Server aborts the
statement that causes the error, but continues to process other
statements in the transaction or batch.

Standards and compliance

e arithabort numeric_truncation specifies behavior following aloss of
scale by an exact numeric datatype during an implicit datatype
conversion. (When an explicit conversion resultsin alossof scale, the
results are truncated without warning.) The default setting, arithabort
numeric_truncation on, aborts the statement that causes the error but
continues to process other statements in the transaction or batch. If
you set arithabort numeric_truncation off, Adaptive Server truncatesthe
query results and continues processing.

The arithignore option determines whether Adaptive Server prints a
warning message after an overflow error. By default, the arithignore option
isturned off. This causes Adaptive Server to display a warning message
after any query that resultsin numeric overflow. Toignoreoverflow errors,
use set arithignore on.

Note The arithabort and arithignore options were redefined for release
10.0. If you use these optionsin your applications, examine them to be
sure they still produce the desired effects.

Standards and compliance

10

Standard Complience level

SQL92 Transact-SQL provides the smallint, int, numeric, decimal,
float, double precision, real, char, and varchar SQL 92
datatypes. Thetinyint, binary, varbinary, image, bit, datetime,
smalldatetime, money, smallmoney, nchar, nvarchar,unichar,
univarchar, sysname, text, timestamp, and user-defined
datatypes are Transact-SQL extensions.

CHAPTER 1 System and User-Defined Datatypes

Exact numeric datatypes

Function

Integer Types

Entering integer data

Use the exact numeric datatypes when it isimportant to represent avalue
exactly. Adaptive Server provides exact numeric types for both integers
(whole numbers) and numbers with a decimal portion.

Adaptive Server provides three exact numeric datatypesto store integers:
int (or integer), smallint, and tinyint. Choose the integer type based on the
expected size of the numbers to be stored. Internal storage size varies by
type, as shown in Table 1-5:

Table 1-5: Integer datatypes

Bytes of
Datatype Stores Storage
intleger] Whole numbers between-23% and 231 - 1 4
(-2,147,483,648 and 2,147,483,647), inclusive.
smallint Whole numbers between -2%° and 2°-1 2
(-32,768 and 32,767), inclusive.
tinyint Whole numbers between 0 and 255, inclusive. 1

(Negative numbers are not permitted.)

Enter integer data as a string of digits without commas. Integer data can
includeadecimal point aslongasall digitsto theright of the decimal point
are zeros. The smallint and integer datatypes can be preceded by an
optional plus or minus sign. The tinyint datatype can be preceded by an
optional plussign.

Table 1-6 shows somevalid entriesfor a column with a datatype of integer
and indicates how isql displays these values:

11

Exact numeric datatypes

Decimal datatypes

Table 1-6: Valid integer values

Value Entered Value Displayed
2 2

+2 2

-2 -2

2. 2

2.000 2

Table 1-7 lists some invalid entries for an integer column:

Table 1-7: Invalid integer values

Value Entered Type of Error

2,000 Commas not allowed.

2- Minus sign should precede digits.

345 Digitsto the right of the decimal point are nonzero
digits.

Adaptive Server provides two other exact numeric datatypes, numeric and
dec[imal], for numbersthat include decimal points. Data stored in numeric
and decimal columnsis packed to conserve disk space, and preservesits
accuracy to the least significant digit after arithmetic operations. The
numeric and decimal datatypes are identical in all respects but one: only
numeric datatypeswith ascale of 0 canbeusedfor theIDENTITY column.

Specifying precision and scale

12

The numeric and decimal datatypes accept two optional parameters,
precision and scale, enclosed in parentheses and separated by a comma:

datatype [(precision [, scale])]

Adaptive Server treats each combination of precision and scale asa
distinct datatype. For example, numeric(10,0) and numeric(5,0) are two
separate datatypes. The precision and scale determine the range of values
that can be stored in adecimal or numeric column:

* The precision specifies the maximum number of decimal digits that
can be stored in the column. It includes all digits, both to the right and
to the | eft of the decimal point. You can specify precisions ranging
from 1 digit to 38 digits or use the default precision of 18 digits.

CHAPTER 1 System and User-Defined Datatypes

Storage size

Entering decimal data

¢ The scale specifies the maximum number of digitsthat can be stored
to theright of the decimal point. The scale must be less than or equal
to the precision. You can specify a scale ranging from O digitsto 38
digits or use the default scale of O digits.

The storage size for anumeric or decimal column depends on its precision.
The minimum storage requirement is 2 bytes for a 1- or 2-digit column.
Storage sizeincreases by approximately 1 byte for each additional 2 digits
of precision, up to a maximum of 17 bytes.

Usethe following formulato cal cul ate the exact storage size for anumeric
or decimal column:

ceiling (precision/ log 256) + 1

For example, the storage size for a numeric(18,4) column is 9 bytes.

Enter decimal and numeric dataas astring of digits preceded by an optional
plus or minus sign and including an optional decimal point. If the value
exceeds either the precision or scale specified for the column, Adaptive
Server returns an error message. Exact numeric typeswith ascale of O are
displayed without a decimal point.

Table 1-8 shows some valid entries for a column with a datatype of
numeric(5,3) and indicates how these values are displayed by isql:

Table 1-8: Valid decimal values

Value Entered Value Displayed
12.345 12.345

+12.345 12.345

-12.345 -12.345
12.345000 12.345

121 12.100

12 12.000

Table 1-9 shows some invalid entries for a column with a datatype of
numeric(5,3):

13

Approximate numeric datatypes

Table 1-9: Invalid decimal values

Value Entered Type of Error

1,200 Commeas not allowed.

12- Minus sign should precede digits.

12.345678 Too many nonzero digits to the right of the decimal
point.

Standards and compliance

Standard Complience level
SQL92 Transact-SQL provides the smallint, int, numeric, and decimal

SQL 92 exact numeric datatypes. Thetinyint type is a Transact-
SQL extension.

Approximate numeric datatypes

Function

Use the approximate numeric types, float, double precision, and real, for
numeric data that can tolerate rounding during arithmetic operations. The
approximate numeric types are especially suited to datathat coversawide
range of values. They support all aggregate functions and all arithmetic
operations except modulo.

Understanding approximate numeric datatypes

Approximate numeric datatypes, used to store fl oating-point numbers, are
inherently slightly inaccurate in their representation of real numbers—
hence the name * approximate numeric”. To use these datatypes, you must
understand their limitations.

14

CHAPTER 1 System and User-Defined Datatypes

When afloating-point number is printed or displayed, the printed
representation is not quite the same as the stored number, and the stored
number is not quite the same as the number that the user entered. Most of
thetime, the stored representation is close enough, and software makesthe
printed output look just likethe original input, but you must understand the
inaccuracy if you plan to use floating-point numbers for calculations,
particularly if you are doing repeated cal culations using approximate
numeric datatypes—the results can be surprisingly and unexpectedly
inaccurate.

Theinaccuracy occurs because floating-point numbers are stored in the
computer as binary fractions (that is, as a representative number divided
by apower of 2), but the numberswe use are decimal (powersof 10). This
meansthat only avery small set of numbers can be stored accurately: 0.75
(3/4) can be stored accurately because it isabinary fraction (4 is a power
of 2); 0.2 (2/10) can not (10 is not a power of 2).

Some numbers contain too many digitsto store accurately. double precision
is stored as 8 binary bytes and can represent about 17 digits with
reasonable accuracy. real is stored as4 binary bytesand can represent only
about 6 digits with reasonable accuracy.

If you begin with numbers that are almost correct, and do computations
with them using other numbers that are almost correct, you can easily end
up with aresult that is not even close to being correct. If these
considerations are important to your application, use an exact numeric
datatype.

Range, precision, and storage size

Thereal and double precision types are built on types supplied by the
operating system. The float type accepts an optional binary precisionin
parentheses. float columnswith aprecision of 1-15 are stored asreal; those
with higher precision are stored as double precision.

The range and storage precision for all three types is machine dependent.

Table 1-10 showstherange and storage sizefor each approximate numeric
type. Notethat isql displaysonly 6 significant digits after the decimal point
and rounds the remainder:

15

Approximate numeric datatypes

Table 1-10: Approximate numeric datatypes

Datatype Bytes of Storage

float[(default precision)] 4 for default precision < 16
8 for default precision >= 16

double precision 8

real 4

Entering approximate numeric data

Enter approximate numeric data as a mantissa followed by an optional
exponent:

e Themantissaisasigned or unsigned number, with or without a
decimal point. The column’s binary precision determines the
maximum number of binary digits allowed in the mantissa.

e The exponent, which begins with the character “€” or “E,” must be a
whole number.

The value represented by the entry is the following product:
manti ssa * 10EXPONENT
For example, 2.4E3 represents the value 2.4 times 10°, or 2400.

Values that may be entered by Open Client clients

“NaN" and“Inf” are special valuesthat thefloating point number standard
uses to represent values that are “not a number” and “infinity,”
respectively. Adaptive Server does not usually permit these values, but
Open Client clients can sometimes stuff these values into tables.

Standards and compliance

Standard Complience level

SQL92 Thefloat, double precision, and real datatypes are entry level
compliant.

16

CHAPTER 1 System and User-Defined Datatypes

Money datatypes

Function
Use the money and smallmoney datatypesto store monetary data. You can
usethesetypesfor U.S. dollarsand other decimal currencies, but Adaptive
Server provides no means to convert from one currency to another. You
can use all arithmetic operations except modulo, and all aggregate
functions, with money and smallmoney data.

Accuracy

Both money and smallmoney are accurate to one ten-thousandth of a
monetary unit, but they round values up to two decimal placesfor display
purposes. The default print format placesacommaafter every threedigits.

Range and storage size
Table 1-11 summarizes the range and storage requirements for money

datatypes:
Table 1-11: Money datatypes
Bytes of
Datatype Range Storage
money Monetary val ues between 8
+922,337,203,685,477.5807 and
-922,337,203,685,477.5808
smallmoney Monetary val ues between 4

+214,748.3647 and -214,748.3648

Entering monetary values

Monetary values entered with E notation areinterpreted asfloat. This may
cause an entry to be rejected or to lose some of its precision whenitis
stored as amoney or smallmoney value.

17

Timestamp datatype

money and smallmoney values can be entered with or without a preceding
currency symbol, such asthedollar sign ($), yensign (¥), or pound sterling
sign (£). To enter anegative value, place the minus sign after the currency
symbol. Do not include commasin your entry.

Standards and compliance

Standard Complience level
SQL92 The money and smallmoney datatypes are Transact-SQL
extensions.

Timestamp datatype

Function

Use the user-defined timestamp datatype in tablesthat are to be browsed in
Client-Library™ applications (see“Browse Mode” for moreinformation).
Adaptive Server updates the timestamp column each time itsrow is
modified. A table can have only one column of timestamp datatype.

Creating a timestamp column

18

If you create a column named timestamp without specifying a datatype,
Adaptive Server defines the column as atimestamp datatype:

create table testing
(cl int, timestanmp, c2 int)

You can also explicitly assign the timestamp datatype to a column named
timestamp:

create table testing
(cl int, timestanp tinestanp, c2 int)

or to a column with another name:

create table testing

CHAPTER 1 System and User-Defined Datatypes

(cl int, t_stanp tinmestanp,c2 int)

You can create a column named timestamp and assign it another datatype
(although this could be confusing to other users and would not allow the
use of the browse functionsin Open Client™ or with the tsequal function):

create table testing
(cl int, timestanp datetine)

Date and time datatypes

Function

Use datetime and smalldatetime to store absolute date and time
information. Use timestamp to store binary-type information

Range and storage requirements

Table 1-12 summarizes the range and storage requirements for the
datetime and smalldatetime datatypes:

Table 1-12: Transact-SQL datatypes for storing dates and times

Datatype Range Bytes of Storage
datetime January 1, 1753 through December 31, 9999 8
smalldatetime January 1, 1900 through June 6, 2079 4

Entering datetime and smalldatetime data

The datetime and smal | datetime datatypes consist of a date portion either
followed by or preceded by atime portion. (You can omit either the date
or the time, or both.) Both datetime and smalldatetime values must be
enclosed in single or double quotes.

19

Date and time datatypes

datetime columns hold dates between January 1, 1753 and December
31, 9999. datetime values are accurate to 1/300 of a second on
platformsthat support thislevel of granularity. Storage sizeis 8 bytes:
4 bytes for the number of days since the base date of January 1, 1900
and 4 bytes for the time of day.

smalldatetime columns hold dates from January 1, 1900 to June 6,
2079, with accuracy to the minute. Storage sizeis 4 bytes: 2 bytesfor
the number of days since January 1, 1900 and 2 bytes for the number
of minutes since midnight.

Entering the date portion of a datetime or smalldatetime value

Dates consist of amonth, day, and year and can be entered in avariety of
formats:

You can enter the entire date as an unseparated string of 4, 6, or 8
digits, or usedash (/), hyphen (-), or period (.) separators between the
date parts.

* When entering dates as unseparated strings, use the appropriate
format for that string length. Use leading zeros for single-digit
years, months, and days. Dates entered in the wrong format may
be misinterpreted or result in errors.

e When entering dates with separators, use the set dateformat
option to determine the expected order of date parts. If the first
date part in a separated string is four digits, Adaptive Server
interprets the string as yyyy-mm-dd format.

Some date formats accept 2-digit years (yy):

e Numberslessthan 50 are interpreted as 20yy. For example, 01 is
2001, 32 is 2032, and 49 is 2049.

e Numbersequal to or greater than 50 are interpreted as 19yy. For
example, 50 is 1950, 74 is1974, and 99 is 1999.

You can specify the month as either a number or aname. Month
names and their abbreviations are language-specific and can be
entered in uppercase, lowercase, or mixed case.

If you omit the date portion of a datetime or smalldatetime value,
Adaptive Server uses the default date of January 1, 1900.

Table 1-13 describes the acceptable formats for entering the date portion
of adatetime or smalldatetime value:

20

CHAPTER 1 System and User-Defined Datatypes

Table 1-13: Date formats for datetime and smalldatetime datatypes

Date Format Interpretation Sample Entries Meaning
4-digit string with no separators Interpreted as yyyy. Date defaults ~ “1947” Jan 11947

to Jan 1 of the specified year.
6-digit string with no separators Interpreted as yymmdd. “450128" Jan 28 2045

For yy <50, year is 20yy. “520128" Jan 281952

For yy >= 50, year is 19yy.
8-digit string with no separators Interpreted as yyyymmdd. “19940415" Apr 15 1994
String consisting of 2-digit month, The dateformat and language set ~ “4/15/94” All of these entries
day, and year separated by dlashes, options determine the expected “4.15.94” areinterpreted as
hyphens, or periods, or a order of date parts. For “4-15-94" Apr 15 1994 when
combination of the above. us_english, the default order is “04.15/94" the dateformat

mdly. option is set to

For yy < 50, year isinterpreted as mdy.

20yy. For yy >= 50, year is

interpreted as 19yy.
String consisting of 2-digit month, The dateformat and language set ~ “04/15.1994” Interpreted as Apr
2-digit day, and 4-digit year options determine the expected 15 1994 when the
separated by slashes, hyphens, or order of date parts. For dateformat option
periods, or acombination of the us_english, the default order is is set to mdy.
above. mdly.
Monthisenteredin characterform If 4-digit year is entered, date “April 15, 1994” All of these entries
(either full month name or its parts can be entered in any order. “1994 15 apr” areinterpreted as
standard abbreviation), followed “1994 April 15" Apr 15 1994.
by an optional comma. “15 APR 1994”

If day is omitted, al 4 digits of “apr 1994” Apr 11994

year must be specified. Day

defaultsto the first day of the

month.

If year isonly 2 digits (yy), itis “mar 16 17" Mar 16 2017

expected to appear after theday. « apr 1594 Apr 15 1994

For yy < 50, year isinterpreted as

20yy. For yy >=50, year is

interpreted as 19yy.
The empty string, “” Date defaults to Jan 1 1900. Jan 1 1900

Entering the time portion of a datetime or smalldatetime value

hour s[: m nutes[: seconds[:m|liseconds]]

Use 12AM for midnight and 12PM for noon.

Thetime component of adatetime or smalldatetime value must be specified
asfollows:

[AM] PM

21

Date and time datatypes

e Atimevaue must contain either acolon or an AM or PM signifier.
The AM or PM can be entered in uppercase, lowercase, or mixed case.

e The seconds specification can include either a decimal portion
preceded by adecimal point or anumber of milliseconds preceded by
acolon. For example, “12:30:20:1" means twenty seconds and one
millisecond past 12:30; “12:30:20.1” means twenty and one-tenth of
asecond past 12:30.

e |f you omit the time portion of adatetime or smalldatetime value,
Adaptive Server uses the default time of 12:00:00:000AM.

Display formats for datetime and smalldatetime values

Thedisplay format for datetime and smalldatetime valuesis“Mon dd yyyy
hh:mmAM” (or “PM"); for example, “ Apr 151988 10:23PM”. To display
seconds and milliseconds, and to obtain additional date styles and date-
part orders, use the convert function to convert the data to a character
string. Adaptive Server may round or truncate millisecond values.

Table 1-14 lists some examples of datetime entries and their display
values:

Table 1-14: Examples of datetime entries

Entry Value Displayed
“1947" Jan 1 1947 12:.00AM
“450128 12:30:1PM” Jan 28 2045 12:30PM
“12:30.1PM 450128" Jan 28 2045 12:30PM
“14:30.22" Jan 1 1900 2:30PM
“4am” Jan 1 1900 4.00AM

Finding datetime values that match a pattern

22

Use the like keyword to look for dates that match a particular pattern. If
you use the equality operator (=) to search datetime valuesfor aparticular
month, day, and year, Adaptive Server returns only those val ues for which
thetimeis precisely 12:00:00:000AM.

For example, if you insert the value “9:20" into a column named
arrival_time, Adaptive Server converts the entry into “Jan 1 1900
9:20AM”. If you look for this entry using the equality operator, it is not
found:

where arrival _tinme = "9:20" /* does not match */

CHAPTER 1 System and User-Defined Datatypes

Manipulating dates

You can find the entry using the like operator:
where arrival _tine |ike "9%9:20%

When using like, Adaptive Server first converts the dates to datetime
format and then to varchar. The display format consists of the 3-character
month in the current language, 2 charactersfor theday, 4 charactersfor the
year, the time in hours and minutes, and “AM” or “PM.”

When searching with like, you cannot use the wide variety of input formats
that are available for entering the date portion of datetime and
smalldatetime values. Since the standard display formats do not include
seconds or milliseconds, you cannot search for seconds or milliseconds
with like and a match pattern, unless you are also using style 9 or 109 and
the convert function.

If you are using like, and the day of the month is a number between 1 and
9, insert 2 spaces between the month and the day to match the varchar
conversion of the datetime value. Similarly, if the hour islessthan 10, the
conversion places 2 spaces between the year and the hour. The clause:

like May 2%

(with 1 space between “May” and “2") finds all dates from May 20
through May 29, but not May 2. You do not need to insert the extra space
with other date comparisons, only with like, since the datetime values are
converted to varchar only for the like comparison.

You can do some arithmetic cal culations on datetime values with the built-
in date functions. See “Date functions”.

Standards and compliance

Standard Complience level
SQL92 The datetime and smalldatetime datatypes are Transact-SQL
extensions.

23

Character datatypes

Character datatypes

Function

Use the character datatypesto store strings consisting of letters, numbers,
and symbols. Usethe fixed-length datatypes, char(n) , and unichar (n) , and
the variable-length datatypes, varchar(n) and univarchar (n), for single-
byte character sets such as us_english. Use the fixed-length datatype,
nchar(n) , and the variable-length datatype, nvarchar(n) , for multibyte
character sets such as Japanese. The character datatypes can store a
maximum of pagesize; use the text datatype (described in text and image
datatypes) for strings longer than 255 characters.

Length and storage size

Use n to specify the length in characters for the fixed-length datatypes,
char(n) , unichar(n) , and nchar(n) . Entries shorter than the assigned length
are blank-padded; entries longer than the assigned length are truncated
without warning, unless the string_rtruncation option to the set command
isset to on. Fixed-length columnsthat allow nullsareinternally converted
to variable-length columns.

Use n to specify the maximum length in charactersfor the variable-length
datatypes, varchar(n), univarchar(n), and nvarchar(n) . Datain variable-
length columnsiis stripped of trailing blanks; storage size is the actual
length of the data entered. Data in variable-length variables and
parameters retains all trailing blanks, but is not padded to the defined
length. Character literals are treated as variable-length datatypes.

Fixed-length columnstend to take more storage space than variable-length
columns, but are accessed somewhat faster. Table 1-15 summarizes the
storage requirements of the different character datatypes:

Table 1-15: Character datatypes

Datatype Stores Bytes of Storage

char(n) Fixed-length data, such as social security n
numbers or postal codes, in single-byte
character sets.

unichar(n) Fixed-length uncode data, in single-byte n* @@unicharsize (@@unicharsize equals 2)
character sets.

nchar(n) Fixed-length datain multibyte character sets n* @@ncharsize

24

CHAPTER 1 System and User-Defined Datatypes

Datatype Stores Bytes of Storage

varchar(n) Variable-length data, such as names, in Actual number of characters entered
single-byte character sets.

univarchar(n) Variable-length Unicodedata, insingle-byte Actual number of characters* @@unicharsize
character sets.

nvarchar(n) Variable-length datain multibyte character ~ Actual number of characters* @@ncharsize
sets

Determining column length with system functions

Use the char_length string function and datalength system function to
determine column length:

e char_length returnsthe number of charactersin the column, stripping
trailing blanks for variable-length datatypes.

e datalength returns the number of bytes, stripping trailing blanks for
data stored in variable-length columns.

When achar valueis declared to allow NULLS, Adaptive Server storesit
internally asavarchar.

If the min or max aggregate functions are used on achar column, the result
returned is varchar, and is therefore stripped of all trailing spaces.

Entering character data

Character strings must be enclosed in single or double quotes. If you use
set quoted_identifier on, use single quotes for character strings; otherwise,
Adaptive Server treats them as identifiers.

Strings that include the double-quote character should be surrounded by
single quotes. Strings that include the single-quote character should be
surrounded by double quotes. For example:

' Ceorge said, "There nust be a better way."’
"Isn’t there a better way?"

An aternativeisto enter two quotation marksfor each quotation mark you
want to include in the string. For example;

"Ceorge said, ""There nmust be a better way.""
"Isn’’t there a better way?

25

Character datatypes

To continue a character string onto the next line of your screen, enter a
backslash (\) before going to the next line.

Treatment of blanks

The following example creates a table named spaces that has both fixed-
and variable-length character columns:

create tabl e spaces (cnot char(5) not null
cnull char(5) null
vnot varchar(5) not null
vnul | varchar(5) null,
expl anati on varchar(25) not null)

i nsert spaces values ("a", "b", "c", "d",
"pads char-not-null only")

i nsert spaces values ("1 ",o"2 ","3 "
"4 ", "truncates trailing blanks")

i nsert spaces values (" e", " fr, " g",

" h", "l eadi ng bl anks, no change")

i nsert spaces val ues (" w"," x "," y ",

" z ", "truncates trailing blanks")

i nsert spaces values ("", "", ,
"enpty string equals space")

select "[" + cnot + "]",
“I" + cnull + "]",
"[" + vnot + "]",
"

+ vnull + "]"
expl anation from spaces
expl anation
[[[[d] pads char-not-null only
[[[[4] truncates trailing bl anks
[el [fl [g [h] | eadi ng bl anks, no change
[[[[
[[[[

z] truncates trailing bl anks
] enpty string equals space

(5 rows affected)

This exampleillustrates how the column’s datatype and null type interact
to determine how blank spaces are treated:

26

CHAPTER 1 System and User-Defined Datatypes

Only char not null and nchar not null columns are padded to the full
width of the column; char null columns are treated like varchar and
nchar null columns are treated like nvarchar.

Only unichar not null columns are padded to the full width of the
column; unichar null columns are treated like univarchar.

Preceding blanks are not affected.

Trailing blanksaretruncated except for char, unichar and nchar not null
columns.

The empty string (* ") istreated as a single space. In char, nchar and
unichar not null columns, the result isacolumn-length field of spaces.

Manipulating character data

You can use the like keyword to search character strings for particular
characters and the built-in string functions to manipulate their contents.
Strings consisting of numbers can be used for arithmetic after being
converted to exact and approximate numeric datatypes with the convert
function.

Standards and compliance

Standard Complience level

SQL92 Transact-SQL provides the char and varchar SQL 92 datatypes.

The nchar, nvarchar, unichar, and univarchar datatypes are
Transact-SQL extensions.

Binary datatypes

Function

Use the binary datatypes, binary(n) and varbinary(n), to store raw binary
data, such as pictures, in a hexadecimal-like notation, up to the maximum
column size for your server’slogical page size.

27

Binary datatypes

Valid binary and varbinary entries

Binary data begins with the characters “0x” and can include any
combination of digitsand the uppercase and lowercase letters A through F.

Use n to specify the column length in bytes, or use the default length of 1
byte. Each byte stores 2 binary digits. If you enter avalue longer than n,
Adaptive Server truncates the entry to the specified length without
warning or error.

Usethefixed-length binary type, binary(n), for datainwhich al entriesare
expected to be approximately equal in length.

Use the variable-length binary type, varbinary(n), for datathat is expected
to vary greatly in length.

Because entries in binary columns are zero-padded to the column length
(n), they may require more storage space than those in varbinary columns,
but they are accessed somewhat faster.

Entries of more than the max column size

Use theimage datatype to store larger blocks of binary data (up to
2,147,483,647 bytes) on external data pages. You cannot use the image
datatype for variables or for parametersin stored procedures. For more
information, see the section “text and image datatypes.”

Treatment of trailing zeroes

28

All binary not null columns are padded with zeros to the full width of the
column. Trailing zerosaretruncated in all varbinary dataand inbinary null
columns, since columnsthat accept null valuesmust betreated asvariable-
length columns.

The following example creates a table with all four variations of binary
and varbinary datatypes, NULL and NOT NULL. Thesamedataisinserted
inall four columnsand is padded or truncated according to the datatype of
the column.

create table zeros (bnot binary(5) not null,
bnul | binary(5) null,
vnot varbinary(5) not null,
vnul | varbinary(5) null)

CHAPTER 1 System and User-Defined Datatypes

insert zeros val ues (0x12345000, 0x12345000,
0x12345000, 0x12345000)

insert zeros values (0x123, 0x123, 0x123, 0x123)

select * from zeros

bnot bnul | vnot vnul |
0x1234500000 0x123450 0x123450 0x123450
0x0123000000 0x0123 0x0123 0x0123

Because each byte of storage holds 2 binary digits, Adaptive Server
expects binary entries to consist of the characters “0x” followed by an
even number of digits. When the “0x” isfollowed by an odd number of
digits, Adaptive Server assumesthat you omitted the leading 0 and adds it
for you.

Input values “0x00” and “0x0" are stored as“0x00" in variable-length
binary columns (binary null, image and varbinary columns). In fixed-
length binary (binary not null) columns, the value is padded with zeros to
the full length of the field:

insert zeros val ues (0x0, 0xO0, 0x0, 0x0)
select * from zeros where bnot = 0x00
bnot bnul | vnot vnul |

0x0000000000 0x00 0x00 0x00

If the input value does not include the “ 0x”, Adaptive Server assumesthat
the value is an ASCII value and converts it. For example:

create table sanple (col _a binary(8))
insert sanple values (' 002710000000aelb’)

select * fromsanple
col _a

0x3030323731303030

Platform dependence

The exact form in which you enter a particular val ue depends upon the
platform you are using. Therefore, calculationsinvolving binary data can
produce different results on different machines.

29

bit datatype

You cannot use the aggregate functions sum or avg with the binary
datatypes.

For platform-independent conversions between hexadecimal strings and
integers, use the inttohex and hextoint functions rather than the platform-
specific convert function. For details, see “ Datatype conversion
functions’.

Standards and compliance

bit datatype

Function

Standard Complience level
SQL92 The binary and varbinary datatypes are Transact-SQL
extensions.

Usethebit datatype for columnsthat contain true/fal se and yes/no types of
data. The status column in the syscolumns system table indicates the
unique offset position for bit datatype columns.

Entering data into bit columns

Storage size

30

bit columns hold either O or 1. Integer valuesother than O or 1 are accepted,
but are aways interpreted as 1.

Storage sizeis 1 byte. Multiple bit datatypes in atable are collected into
bytes. For example, 7 bit columnsfit into 1 byte; 9 bit columns take 2
bytes.

CHAPTER 1 System and User-Defined Datatypes

Restrictions

Columns with a datatype of bit cannot be NULL and cannot have indexes
on them.

Standards and compliance

Standard Complience level
SQL92 Transact-SQL extension

sysname datatype

Function

sysname is a user-defined datatype that is distributed on the Adaptive
Server installation tape and used in the system tables. Its definition is:

varchar(30) "not null"

Using the sysname datatype

You cannot declare a column, parameter, or variable to be of type
sysname. It is possible, however, to create a user-defined datatype with a
base type of sysname. You can then define columns, parameters, and
variables with the user-defined datatype.

Standards and compliance

Standard Complience level

SQL92 All user-defined datatypes, including sysname, are Transact-
SQL extensions.

31

text and image datatypes

text and image datatypes

Function

text columns are variable-length columns that can hold up to
2,147,483,647 (231 - 1) bytes of printable characters.

image columns are variable-length columns that can hold up to
2,147,483,647 (23! - 1) bytes of hexadecimal-like data.

Defining a text or image column

32

You define atext or image column as you would any other column, with a
create table Or alter table statement. text and image datatype definitions do
not include lengths. They do permit null values. The column definition
takes the form:

column_name {text | image} [null]

For example, the create table statement for the author’s blurbs table in the
pubs2 database with atext column, blurb, that permits null values, is:

create table blurbs
(au_id id not null,
copy text null)

To create the au_pix tablein the pubs2 database with an image column;

create table au_pix

(au_id char(11) not null,
pic i mge null,

format _type char(11) null,

byt esi ze int null,

pi xwi dt h_hor char (14) null,
pi xwi dt h_vert char (14) null)

CHAPTER 1 System and User-Defined Datatypes

How Adaptive Server stores text and image data

Adaptive Server storestext andimage datainalinked list of data pagesthat
are separate from the rest of the table. Each text or image page stores a
maximum of 1800 bytes of data. All text and image datafor atableis
stored in a single page chain, regardless of the number of text and image
columns the table contains.

Putting additional pages on another device

You can place subsequent text and image data pages on a different logical
device with sp_placeobject.

Zero padding

image values that have an odd number of hexadecimal digits are padded
with aleading zero (an insert of “Oxaaabb” becomes “ 0x0aaabb”).

Effect of partitioning on data storage

You can use the partition option of the alter table command to partition a

table that contains text and image columns. Partitioning the table creates

additional page chains for the other columnsin thetable, but has no effect
on the way the text and image columns are stored.

Initializing text and image columns

text and image columns are not initialized until you update them or insert
anon-null value. Initialization allocates at least one data page for each
non-null text or image datavalue. It also createsapointer inthetabletothe
location of the text or image data.

For example, the following statements create the tabl e testtext and
initialize the blurb column by inserting anon-null value. The column now
has avalid text pointer, and the first text page has been allocated.

create table texttest

(title_id varchar(6), blurb text null, pub_id
char(4))

insert texttest val ues

("BU7832", "Straight Tal k About Computers is an
annot at ed anal ysi s of what conputers can do for you:

33

text and image datatypes

a no-hype guide for the critical user.", "1389")

The following statements create atable for image values and initialize the
image column;

create tabl e i maget est

(image_id varchar(6), imagecol inmage null,
graphic_id char(4))

i nsert imagetest val ues

("94732", 0x0000008300000000000100000000013c,
"1389")

Note Remember to surround text val ueswith quotation marksand precede
image values with the characters “0x”.

For information on inserting and updating text and image datawith Client-
Library programs, see the Client-Library/C Reference Manual.

Saving space by allowing NULL

To save storage space for empty text or image columns, define them to
permit null valuesand insert nullsuntil you usethe column. Inserting anull
value does not initialize atext or image column and, therefore, does not
create atext pointer or allocate storage. For example, the following
statement inserts values into thetitle_id and pub_id columns of the testtext
table created above, but does not initialize the blurb text column:

insert texttest
(title_id, pub_id) values ("BU7832", "1389")

After atext or image row is given anon-null value, it always contains at
|east one data page. Resetting the value to null does not deallocate its data
page.

Getting information from sysindexes

34

Each table with text or image columns has an additional row in sysindexes
that provides information about these columns. The name columnin
sysindexes uses the form “tablename”. Theindid is always 255. These
columns provide information about text storage:

CHAPTER 1 System and User-Defined Datatypes

Table 1-16: Storage of text and image data

Column Description

ioampg Pointer to the allocation page for the text page chain
first Pointer to the first page of text data

root Pointer to the last page

segment Number of the segment where the object resides

You can query the sysindexes table for information about these columns.
For example, the following query reports the number of data pages used
by the blurbs table in the pubs2 database:

sel ect nane, data_pgs(object_id("blurbs"), ioanpg)
from sysi ndexes

where nane = "tbl urbs”

nane

t bl ur bs 7

Note The system tables poster shows a one-to-one (1-1) relationship
between sysindexes and systabstats. Thisis correct, except for text and
image columns, for which information is not kept in systabstats.

Using readtext and writetext

Before you can use writetext to enter text data or readtext to read it, you
must initialize the text column. For details, see readtext and writetext.

Using update to replace existing text and image datawith NULL reclaims
all allocated data pages except the first page, which remains available for
future use of writetext. To deallocate all storage for the row, use delete to
remove the entire row.

Determining how much space a column uses

sp_spaceused provides information about the space used for text data as
index_size :

sp_spaceused bl urbs

35

text and image datatypes

name rowtotal reserved data i ndex_si ze unused

bl ur bs 6 32 KB 2 KB 14 KB 16 KB

Restrictions on text and image columns
text and image columns cannot be used:

e Asparameters to stored procedures or as val ues passed to these
parameters

e Asloca variables

* Inorder by, compute, group by, and union clauses
e Inanindex

e Insubqueriesor joins

* Inawhere clause, except with the keyword like

e With the + concatenation operator

e Intheif update clause of atrigger

Selecting text and image data

The following global variables return information on text and image data:

36

CHAPTER 1 System and User-Defined Datatypes

Table 1-17: text and image global variables

Variable Explanation

@@textptr The text pointer of the last text or image column inserted or
updated by a process. Do not confuse this global variable
with the textptr() function.

@@textcolid ID of the column referenced by @@textptr.

@@textdbid ID of adatabase containing the object with the column
referenced by @@textptr.

@@textobjid ID of the object containing the column referenced by
@@textptr.

@@textsize Current value of the set textsize option, which specifies the
maximum length, in bytes, of text or image datato be
returned with a select statement. It defaultsto 32K. The
maximum size for @@textsizeis231 - 1 (that is,
2,147,483,647).

@@textts Text timestamp of the column referenced by @@textptr.

Converting text and image datatypes

You can explicitly convert text values to char, unichar, varchar, and
univarchar, and image values to binary or varbinary with the convert
function, but you are limited to the maximum length of the character and
binary datatypes, which is determined by the maximum column size for
your server’slogical page size. If you do not specify the length, the
converted val ue has adefault length of 30 bytes. Implicit conversionisnot
supported.

Pattern matching in text data

Use the patindex function to search for the starting position of the first
occurrence of a specified pattern in atext, varchar, univarchar, unichar or
char column. The % wildcard character must precede and follow the
pattern (except when you are searching for the first or last character).

You can aso use the like keyword to search for a particular pattern. The
following exampl e sel ects each text dataval ue from the copy column of the
blurbs table that contains the pattern “Net Etiquette”.

sel ect copy from bl urbs
where copy like "%\et Etiquette%®%

37

User-defined datatypes

Duplicate rows

The pointer to the text or image data uniquely identifies each row.
Therefore, atable that containstext or image data cannot contain duplicate
rowsunless al text and image dataisNULL. If thisisthe case, the pointer
has not been initialized.

Standards and compliance

Standard Complience level
SQL92 The text and image datatypes are Transact-SQL extensions.

User-defined datatypes

Function

User-defined datatypes are built from the system datatypes and from the
sysname user-defined datatype. After you create a user-defined datatype,
you can use it to define columns, parameters, and variables. Objects that
are created from user-defined datatypes inherit the rules, defaults, null
type, and IDENTITY property of the user-defined datatype, aswell as
inheriting the defaults and null type of the system datatypes on which the
user-defined datatype is based.

Creating frequently used datatypes in the model database

A user-defined datatype must be created in each database in which it will
be used. It isagood practice to create frequently used typesin the model
database. These types are automatically added to each new database
(including tempdb, which is used for temporary tables) asit is created.

38

CHAPTER 1 System and User-Defined Datatypes

Creating a user-defined datatypes

Adaptive Server allowsyou to create user-defined datatypes, based on any
system datatype, with the sp_addtype system procedure. You cannot create
a user-defined datatype based on another user-defined datatype, such as
timestamp or thetid datatype in the pubs2 database.

The sysname datatype is an exception to this rule. Though sysname isa
user-defined datatype, you can useit to build user-defined datatypes.

User-defined datatypes are database objects. Their names are case-
sensitive and must conform to the rules for identifiers.

You can bind rules to user-defined datatypes with sp_bindrule and bind
defaults with sp_bindefault.

By default, objectsbuilt on auser-defined datatypeinherit the user-defined
datatype'snull typeor IDENTITY property. You can overridethenull type
or IDENTITY property in acolumn definition.

Renaming a user-defined datatype

Use sp_rename to rename a user-defined datatype.

Dropping a user-defined datatype
Use sp_droptype to remove a user-defined datatype from a database.

Note You cannot drop a datatype that is already in usein atable.

Getting help on datatypes

Use the sp_help system procedure to display information about the
properties of a system datatype or a user-defined datatype. You can also
use sp_help to display the datatype, length, precision, and scale for each
columnin atable.

39

User-defined datatypes

Standards and compliance

Standard

Complience level

SQL92

User-defined datatypes are a Transact-SQL extension.

40

CHAPTER 2 Transact-SQL Functions

This chapter describes the Transact-SQL functions. Functions are used to
return information from the database. They are allowed in the select list,
in the where clause, and anywhere an expression is allowed. They are
often used as part of a stored procedure or program.

Types of functions

Table 2-1liststhedifferent types of Transact-SQL functionsand describes
the type of information each returns.

Table 2-1: Types of Transact-SQL functions

Type of function

Description

Aggregate functions

Generate summary values that appear as new columns or as
additional rowsin the query results.

Datatype conversion functions

Change expressions from one datatype to another and specify new
display formats for date/time information.

Date functions

Do computations on datetime and smalldatetime values and their
components, date parts.

Mathematical functions

Return values commonly needed for operations on mathematical
data.

Security functions

Return security-related information.

String functions

Operate on binary data, character strings, and expressions.

System functions

Return specid information from the database.

Text and image functions

Supply values commonly needed for operations on text and image
data.

Table 2-2 lists the functions in alphabetical order.
Table 2-2: List of Transact-SQL functions

Function Type Return value

abs Mathematical The absolute value of an expression.

acos Mathematical The angle (in radians) whose cosine is specified.

ascii String The ASCII codefor the first character in an expression.

41

Types of functions

Function Type Return value

asin Mathematical The angle (in radians) whose sine is specified.

atan Mathematical The angle (in radians) whose tangent is specified.

atn2 Mathematical The angle (in radians) whose sine and cosine are specified.

avg Aggregate The numeric average of all (distinct) values.

ceiling Mathematical The smallest integer greater than or equal to the specified value.

char String The character equivalent of an integer.

charindex String Returns an integer representing the starting position of an
expression.

char_length String The number of charactersin an expression.

col_length System The defined length of a column.

col_name System The name of the column whose table and column IDs are specified.

compare System Returns the following values, based on the collation rules that you
chose:
e l-indicatesthat char_expressionl is greater than

char_expression2
» O-indicatesthat char_expressionlisequal to char_expression2
e -l1-indicatesthat char_expressionl islessthan
char_expression2
convert Datatype The specified value, converted to another datatype or a different
Conversion datetime display format.

cos Mathematical The cosine of the specified angle (in radians).

cot Mathematical The cotangent of the specified angle (in radians).

count Aggregate The number of (distinct) non-null values.

curunreservedpgs System The number of free pagesin the specified disk piece.

data_pgs System The number of pages used by the specified table or index.

datalength System The actua length, in bytes, of the specified column or string.

dateadd Date The date produced by adding a given number of years, quarters,
hours, or other date parts to the specified date.

datediff Date The difference between two dates.

datename Date The name of the specified part of adatetime value.

datepart Date The integer value of the specified part of a datetime value.

db_id System The ID number of the specified database.

db_name System The name of the database whose ID number is specified.

degrees Mathematical Thesize, in degrees, of an angle with a specified number of radians.

difference String The difference between two soundex values.

exp Mathematical The value that results from raising the constant e to the specified
power.

floor Mathematical The largest integer that is less than or equal to the specified value.

42

CHAPTER 2 Transact-SQL Functions

Function Type Return value
getdate Date The current system date and time.
hextoint Datatype The platform-independent integer equivalent of the specified
Conversion hexadecimal string.
host_id System The host process ID of the client process.
host_name System The current host computer name of the client process.
index_col System The name of the indexed column in the specified table or view.
inttohex Datatype The platform-independent, hexadecimal equivalent of the specified
Conversion integer.
isnull System Substitutes the value specified in expression2 when expressionl
evaluatesto NULL.
is_sec_service_on Security “1" if the security serviceis active; “0” if it isnot.
isnull String The specified expression, trimmed of leading blanks.
Ict_admin System Manages the last-chance threshol d.
license_enabled System “1" if the feature’slicenseis enabled; “0” if it is not.
log Mathematical The natural logarithm of the specified number.
log10 Mathematical The base 10 logarithm of the specified number.
lower String The uppercase equivalent of the specified expression.
max Aggregate The highest value in a column.
min Aggregate The lowest valuein a column.
mut_excl_roles System The mutual exclusivity between two roles.
object_id System The object ID of the specified object.
object_name System The name of the object whose object ID is specified.
patindex String, Text and The starting position of the first occurrence of a specified pattern.
Image
pi Mathematical The constant value 3.1415926535897936.
power Mathematical The value that results from raising the specified number to a given
power.
proc_role System 1if the user has the correct role to execute the procedure; O if the
user does not have thisrole.
ptn_data_pgs System The number of data pages used by a partition.
radians Mathematical Thesize, inradians, of an angle with a specified number of degrees.
rand Mathematical A random value between 0 and 1, generated using the specified seed
value.
replicate String A string consisting of the specified expression repeated a given
number of times.
reserved_pgs System The number of pages allocated to the specified table or index.
reverse String The specified string, with characters listed in reverse order.

43

Types of functions

Function Type Return value

right String The part of the character expression, starting the specified number
of characters from the right.

role_contain System 1if role2 containsrolel.

role_id System The system role ID of the role whose name you specify.

role_name System The name of arole whose system role ID you specify.

round Mathematical The value of the specified number, rounded to a given number of
decimal places.

rowcent System An estimate of the number of rows in the specified table.

rtrim String The specified expression, trimmed of trailing blanks.

show_role System Thelogin's currently active roles.

show_sec_services Security A list of the user’s currently active security services.

sign Mathematical The sign (+1 for positive, 0, or -1 for negative) of the specified
value.

sin Mathematical The sine of the specified angle (in radians).

sortkey System Valuesthat can be used to order results based on collation behavior,
which allows you to work with character collation behaviors
beyond the default set of Latin-character-based dictionary sort
orders and case or accent sensitivity.

soundex String A 4-character code representing the way an expression sounds.

space String A string consisting of the specified number of single-byte spaces.

sqrt Mathematical The square root of the specified number.

str String The character equivalent of the specified number.

stuff String Thestring formed by del eting aspecified number of charactersfrom
one string and replacing them with another string.

substring String The string formed by extracting a specified number of characters
from another string.

sum Aggregate The tota of the values.

suser_id System The server user’s ID number from the syslogins system table.

suser_name System The name of the current server user, or the user whose server user
ID is specified.

syb_sendmsg Sends a message to a User Datagram Protocol (UDP) port.

tan Mathematical The tangent of the specified angle (in radians).

textptr Text and Image The pointer to the first page of the specified text column.

textvalid Text and Image 1if the pointer to the specified text column isvalid; O if itis not.

to_unichar String A unichar expression having the value of the integer expression.

tsequal System Compares timestamp values to prevent update on arow that has
been modified since it was selected for browsing.

uhighsurr String 1if the Unicodevalue at position start isthe high half of asurrogate

44

pair (which should appear first in the pair); otherwise 0.

CHAPTER 2 Transact-SQL Functions

Function Type Return value

ulowsurr String 1if the Unicode value at position start isthe low half of asurrogate
pair (which should appear second in the pair); otherwise 0.

upper String The uppercase equivalent of the specified string.

uscalar String The Unicode scalar value for the first Unicode character in an
expression.

used_pgs System The number of pages used by the specified table and its clustered
index.

user System The name of the current server user.

user_id System The ID number of the specified user or the current user.

user_name System The name within the database of the specified user or the current
user.

valid_name System 0if the specified string is not avalid identifier; anumber other than
0if thestring isvalid.

valid_user System 1if the specified ID isavalid user or diasin at |east one database

on this Adaptive Server.

The following sections describe the types of functions in detail. The
remainder of the chapter contains descriptions of the individual functions
in aphabetical order.

Aggregate functions

The aggregate functions generate summary values that appear as hew
columnsin the query results. The aggregate functions are:

avg
count
max
min

sum

Aggregate functions can be used in the select list or the having clause of a
select statement or subquery. They cannot be used in awhere clause.

Each aggregate in a query requiresits own worktable. Therefore, a query
using aggregates cannot exceed the maximum number of worktables
allowed in aquery (12).

45

Aggregate functions

When an aggregate function is applied to a char datatype value, it
implicitly converts the value to varchar, stripping all trailing blanks.
Likewise, a unichar datatype value isimplicitly converted to univarchar.

The max, min, and count aggregate functions now have semantics that
include the unichar datatype.

Aggregates used with group by

Aggregates are often used with group by. With group by, the tableis
divided into groups. Aggregates produce a single value for each group.
Without group by, an aggregate function in the select list producesasingle
value as aresult, whether it is operating on all the rowsin atable or on a
subset of rows defined by awhere clause.

Aggregate functions and NULL values

Aggregate functions cal cul ate the summary values of the non-null values
inaparticular column. If the ansinull option is set off (the default), thereis
no warning when an aggregate function encountersanull. If ansinull is set
on, aquery returnsthe following SQL STATE warning when an aggregate
function encounters anull:

Warning- null value elimnated in set function

Vector and scalar aggregates

46

Aggregate functions can be applied to all therowsin atable, in which case
they produce a single value, a scalar aggregate. They can also be applied
toall therowsthat have the samevaluein aspecified column or expression
(using the group by and, optionally, the having clause), in which case, they
produce avalue for each group, a vector aggregate. The results of the
aggregate functions are shown as new columns.

You can nest avector aggregate inside a scalar aggregate. For example:

sel ect type, avg(price), avg(avg(price))
fromtitles

group by type

type

CHAPTER 2 Transact-SQL Functions

Example 1

Example 2

UNDECI DED NULL 15. 23
busi ness 13.73 15.23
nmod_cook 11. 49 15. 23
popul ar _conp 21.48 15. 23
psychol ogy 13.50 15. 23
trad_cook 15. 96 15. 23

(6 rows affected)

The group by clause applies to the vector aggregate—in this case,
avg(price). The scalar aggregate, avg(avg(price)), is the average of the
average prices by type in the titles table.

In standard SQL, when a select_list includes an aggregate, all the
select_list columns must either have aggregate functions applied to them
or bein the group by list. Transact-SQL has no such restrictions.

Example 1 shows a select statement with the standard restrictions.
Example 2 shows the same statement with another item (title_id) added to
the select list. order by isalso added toillustrate the differencein displays.
These “extra’” columns can also be referenced in a having clause.

sel ect type, avg(price), avg(advance)
fromtitles

group by type

type

UNDECI DED NULL NULL
busi ness 13.73 6, 281. 25
nmod_cook 11. 49 7, 500. 00
popul ar _conp 21.48 7,500. 00
psychol ogy 13.50 4, 255. 00
trad_cook 15. 96 6, 333. 33

(6 rows affected)

select type, title_id, avg(price), avg(advance)
fromtitles

group by type
order by type

type title_id

UNDECI DED MC3026 NULL NULL

47

Aggregate functions

busi ness BU1032 13.73 6, 281. 25
busi ness BU1111 13.73 6, 281. 25
busi ness BU2075 13.73 6, 281. 25
busi ness BU7832 13.73 6, 281. 25
nod_cook MC2222 11.49 7,500.00
nmod_cook MC3021 11. 49 7, 500. 00
popul ar _conp PC1035 21.48 7, 500. 00
popul ar _conp PC8888 21.48 7, 500. 00
popul ar _conp PC9999 21.48 7, 500. 00
psychol ogy PS1372 13.50 4, 255. 00
psychol ogy PS2091 13.50 4, 255. 00
psychol ogy PS2106 13.50 4, 255. 00
psychol ogy PS3333 13.50 4, 255. 00
psychol ogy PS7777 13.50 4, 255. 00
trad_cook TC3218 15.96 6, 333.33
trad_cook TC4203 15.96 6, 333.33
trad_cook TC7777 15.96 6, 333.33

You can use either a column name or any other expression (except a
column heading or alias) after group by.

Null valuesin the group by column are put into a single group.

The compute clause in a select statement uses row aggregates to produce
summary values. The row aggregates make it possible to retrieve detail
and summary rows with one command. Example 3 illustratesthisfeature:

Example 3 select type, title_id, price, advance
fromtitles
where type = "psychol ogy"
order by type
conpute sun(price), sumadvance) by type

type title_id price advance

psychol ogy PS1372 21.59 7, 000. 00

psychol ogy PS2091 10. 95 2,275.00

psychol ogy PS2106 7.00 6, 000. 00

psychol ogy PS3333 19. 99 2, 000. 00

psychol ogy PS7777 7.99 4, 000. 00
sum sum

67.52 21, 275. 00

Note the difference in display between Example 3 and the examples
without compute (Example 1 and Example 2).

48

CHAPTER 2 Transact-SQL Functions

Aggregate functions cannot be used on virtual tables such as sysprocesses
and syslocks.

If you include an aggregate function in the select clause of a cursor, that
cursor cannot be updated.

Aggregate functions as row aggregates

Row aggregate functions generate summary values that appear as
additional rowsin the query results.

To use the aggregate functions as row aggregates, use the following
syntax:

Start of select statement

compute row_aggregate(column_name)
[, row_aggregate(column_name)]...
[by column_name [, column_name]...]

where:

¢ column_name isthe name of acolumn. It must be enclosed in
parentheses. Only exact numeric, approximate numeric, and money
columns can be used with sum and avg.

One compute clause can apply the same function to several columns.
When using more than one function, use more than one compute
clause.

e by indicates that row aggregate values are to be calculated for
subgroups. Whenever the value of the by item changes, row aggregate
values are generated. If you use by, you must use order by.

Listing morethan oneitem after by breaksagroup into subgroups and
applies afunction at each level of grouping.

The row aggregates make it possible to retrieve detail and summary rows
with one command. The aggregate functions, on the other hand, ordinarily
produce asingle value for al the selected rows in the table or for each
group, and these summary values are shown as new columns.

The following examples illustrate the differences:

sel ect type, sum(price), sun(advance)
fromtitles
where type |ike "%ook"

group by type

49

Aggregate functions

50

type
nod_cook 22.98
trad_cook 47. 89

(2 rows affected)

15, 000. 00
19, 000. 00

sel ect type, price, advance

fromtitles

where type |ike "%ook"

order by type

conpute sun(price), sumadvance) by type

type price
nod_cook 2.99
nod_cook 19. 99
sum
22.98
type price
trad_cook 11. 95
trad_cook 14. 99
trad_cook 20. 95
sum
47. 89
(7 rows affected)
type price
nod_cook 2.99
nod_cook 19. 99

Conpute Resul t:

22.98
type price
trad_cook 11. 95
trad_cook 14. 99
trad_cook 20. 95
Conpute Result:

47. 89

(7 rows affected)

The columns in the compute clause must appear in the select list.

advance

15, 000. 00

15, 000. 00

19, 000. 00

advance

15, 000. 00
advance

19, 000. 00

CHAPTER 2 Transact-SQL Functions

Theorder of columnsinthe select list overridesthe order of the aggregates
in the compute clause. For example:

create table tl (aint, bint, c int null)
insert t1 values(1,5,8)

insert t1 values(2,6,9)

(1 row affected)

conmpute sum(c), max(b), mn(a)
select a, b, ¢ fromtl

If the ansinull option is set off (the default), there is no warning when arow
aggregate encounters a null. If ansinull is set on, a query returns the
following SQL STATE warning when a row aggregate encounters a null:

Warning- null value elinmnated in set function

You cannot use select into in the same statement as a compute clause
because statements that include compute generate tables that include the
summary results, which are not stored in the database.

Datatype conversion functions

Datatype conversion functions change expressions from one datatype to
another and specify new display formats for date/time information. The
datatype conversion functions are:

e convert()
* inttohex()
* hextoint()

The datatype conversion functions can be used in the select list, in the
where clause, and anywhere else an expression is allowed.

51

Datatype conversion functions

Adaptive Server performs certain datatype conversions automatically.
These are called implicit conversions. For example, if you compare achar
expression and a datetime expression, or a smallint expression and an int
expression, or char expressions of different lengths, Adaptive Server
automatically converts one datatype to another.

You must request other datatype conversions explicitly, using one of the
built-in datatype conversion functions. For example, before concatenating
numeric expressions, you must convert them to character expressions.

Adaptive Server does not allow you to convert certain datatypesto certain
other datatypes, either implicitly or explicitly. For example, you cannot
convert smallint data to datetime or datetime data to smallint. Unsupported
conversions result in error messages.

Table 2-3 indicates whether individual datatype conversions are
performed implicitly or explicitly or are unsupported.

Table 2-3: Explicit, implicit, and unsupported datatype conversions

. 5 B £
c [

z £ g 3 8 :;;; g 2 E 3 g E §)

S ¢ i) S ¥ & 6 = 2 =z g ¢ § 8 2 © 2 &
From: To £ 5 8 2 ¢ 2 = =55 38§58 5 5 S8 5§ ¢ E
tinyint -1 | I 1 EE EE UI I I UUI | U
smallint - 1 1 | I 1 EE EE UI I I UUI1l | U
int N | I 1 EE EEUI I I UUI1I | U
decimal Il 11 YE I/E I | E E E E U1l | | UUI I U
numeric Il 11 YE I/E I | E E E E UI | | UUI I U
real [| -1 EEEEUI 1 I UUI I U
float [| Il - EEEEUI I I UUIl | U
[n]char E E E E E E EI I I 1 1 EEE I | 1 1 1
[n]varchar E E E E E E EI I I 1 1 EEE I | 1 1 1
unichar E E E E E E EI I -1 1 EEEEETI I |
univarchar E E E E E E EI I I -1 EEEEETI I |
text u u u u U UuuEEEEUUUUUUUUU
smallmoney | I I | I 1 1 1 E E U -1 1T UUI | U
money [| I 1 1 1 E E UI -1 UUI1I 1| U
bit [| I 1 1 1 E E UI I - UU1I |1 U
smalldatetime u u u u U uul I EEUUUU-111 U
datetime u u u u U vuuvul I EEUUUUI -1 1 U

52

CHAPTER 2 Transact-SQL Functions

[I I
varbinary [I | |
image u u u u U U
Key:

E Explicit datatype conversion is required.

I Conversion can be done either implicitly or with an explicit datatype conversion function.

I/E Explicit datatype conversion function required when thereis loss of precision or scale
and arithabort numeric_truncation is on; otherwise, implicit conversion is allowed.

U Unsupported conversion.
— Conversion of adatatype to itself. These conversions are allowed but are meaningless.

binary

cl—|-

|
I
U E E

c|Cc|Cc
cl—|-
cl—|-
cl—|-

[
[
u u uUu E E

Converting character data to a non-character type

Character datacan be converted to anon-character type—such asamoney,
date/time, exact numeric, or approximate numeric type—if it consists
entirely of charactersthat are valid for the new type. Leading blanks are
ignored. However, if achar expression that consists of ablank or blanksis
converted to a datetime expression, SQL Server converts the blanks into
the default datetime value of “Jan 1, 1900”.

Syntax errors are generated when the data includes unacceptable
characters. Following are some examples of characters that cause syntax
errors.

¢« Commasor decimal pointsininteger data
e« Commasin monetary data
e Lettersin exact or approximate numeric data or bit stream data

¢ Misspelled month namesin date/time data

Converting from one character type to another

When converting from amultibyte character set to asingle-byte character
set, characters with no single-byte equivalent are converted to question
marks.

53

Datatype conversion functions

text columns can be explicitly converted to char, nchar, varchar, unichar,
univarchar, or nvarchar. You are limited to the maximum length of the
character datatypes, which isdetermined by the maximum column sizefor
your server’slogical page size. If you do not specify the length, the
converted value has a default length of 30 bytes.

Converting numbers to a character type

Exact and approximate numeric data can be converted to a character type.
If the new typeistoo short to accommodate the entire string, an
insufficient space error is generated. For example, the following
conversion tries to store a 5-character string in a 1-character type:

sel ect convert(char (1), 12.34)
Insufficient result space for explicit conversion
of NUMERI C value '12.34’ to a CHAR fi el d.

Note When converting float data to a character type, the new type should
be at least 25 characters long.

Rounding during conversion to and from money types

54

The money and smallmoney types store 4 digits to the right of the decimal
point, but round up to the nearest hundredth (.01) for display purposes.
When datais converted to a money type, it is rounded up to four places.

Data converted from amoney type follows the same rounding behavior if
possible. If the new typeis an exact numeric with less than three decimal
places, the dataisrounded to the scal e of the new type. For example, when
$4.50 is converted to an integer, it yields 5:

sel ect convert(int, $4.50)

Data converted to money or smallmoney is assumed to bein full currency
units such as dollars rather than in fractional units such as cents. For
example, the integer value of 5 is converted to the money equivalent of 5
dollars, not 5 cents, in the us_english language.

CHAPTER 2 Transact-SQL Functions

Converting date/time information

Data that is recognizable as a date can be converted to datetime or
smalldatetime. | ncorrect month names|ead to syntax errors. Datesthat fall
outside the acceptabl e range for the datatype lead to arithmetic overflow
errors.

When datetime values are converted to smalldatetime, they are rounded to
the nearest minute.

Converting between numeric types

Data can be converted from one numeric type to another. If the new type
is an exact numeric whose precision or scale is not sufficient to hold the
data, errors can occur.

For example, if you provide afloat or numeric value as an argument to a
built-in function that expects an integer, the value of the float or numeric
is truncated. However, Adaptive Server does not implicitly convert
numerics that have afractional part but returns a scale error message. For
example, Adaptive Server returns error 241 for numerics that have a
fractional part and error 257 if other datatypes are passed.

Use the arithabort and arithignore optionsto determine how Adaptive
Server handles errors resulting from numeric conversions.

Note Thearithabort and arithignore optionshave been redefined for release
10.0 or later. If you use these options in your applications, examine them
to be sure they are still producing the desired behavior.

Arithmetic overflow and divide-by-zero errors

Divide-by-zero errors occur when Adaptive Server triesto divide a
numeric value by zero. Arithmetic overflow errors occur when the new
type hastoo few decimal placesto accommodate the results. This happens
during:

» Explicit or implicit conversionsto exact types with alower precision
or scale

55

Datatype conversion functions

Scale errors

56

e Explicit or implicit conversions of datathat falls outside the
acceptable range for amoney or date/time type

e Conversions of hexadecimal strings requiring more than 4 bytes of
storage using hextoint

Both arithmetic overflow and divide-by-zero errors are considered
serious, whether they occur during an implicit or explicit conversion. Use
the arithabort arith_overflow option to determine how Adaptive Server
handles these errors. The default setting, arithabort arith_overflow on, rolls
back the entire transaction in which the error occurs. If the error occursin
abatch that does not contain atransaction, arithabort arith_overflow on does
not roll back earlier commandsin the batch, and Adaptive Server does not
execute statements that follow the error-generating statement in the batch.
If you set arithabort arith_overflow off, Adaptive Server abortsthe statement
that causes the error, but continues to process other statementsin the
transaction or batch.You can use the @@error global variable to check
statement results.

Use the arithignore arith_overflow option to determine whether Adaptive
Server displays a message after these errors. The default setting, off,
displays a warning message when a divide-by-zero error or aloss of
precision occurs. Setting arithignore arith_overflow on suppresses warning
messages after these errors. The optional arith_overflow keyword can be
omitted without any effect.

When an explicit conversion resultsin aloss of scale, the results are
truncated without warning. For example, when you explicitly convert a
float, numeric, or decimal type to an integer, Adaptive Server assumes you
want the result to be an integer and truncates all numbersto theright of the
decimal point.

CHAPTER 2 Transact-SQL Functions

Domain errors

During implicit conversions to numeric or decimal types, loss of scale
generates a scale error. Use the arithabort numeric_truncation option to
determine how serious such an error is considered. The default setting,
arithabort numeric_truncation on, aborts the statement that causesthe error,
but continuesto process other statementsin thetransaction or batch. If you
set arithabort numeric_truncation off, Adaptive Server truncates the query
results and continues processing.

Note For entry level SQL92 compliance, set:
e arithabort arith_overflow off
e arithabort numeric_truncation on

e arithignore off

The convert() function generates a domain error when the function’s
argument falls outside the range over which the function is defined. This
happensrarely.

Conversions between binary and integer types

The binary and varbinary types store hexadecimal-like data consisting of a
“0x" prefix followed by a string of digits and letters.

These strings are interpreted differently by different platforms. For
example, the string “0x0000100" represents 65536 on machines that
consider byte 0 most significant and 256 on machinesthat consider byte O
least significant.

Binary types can be converted to integer types either explicitly, using the
convert function, or implicitly. If the datais too short for the new type, it
is stripped of its“0x” prefix and zero-padded. If itistoo long, itis
truncated.

Both convert and the implicit datatype conversions evaluate binary data
differently on different platforms. Because of this, results may vary from
one platform to another. Use the hextoint function for platform-
independent conversion of hexadecimal stringsto integers, and the
inttohex function for platform-independent conversion of integers to
hexadecimal values.

57

Datatype conversion functions

Converting between binary and numeric or decimal types

In binary and varbinary datastrings, the first two digits after “ 0x” represent
the binary type: “00” represents a positive number and “01” represents a

negative number. When you convert a binary or varbinary type to numeric
or decimal, be sure to specify the “00” or “01" values after the “0x” digit;
otherwise, the conversion will fail.

For example, here is how to convert the following binary data to numeric:

sel ect convert(nuneric
(38, 18), 0x000000000000000006b14bd1e6eea0000000000000000000000000000000)

123. 456000
This example converts the same numeric data back to binary:

sel ect convert (bi nary, convert (nuneric(38, 18), 123.456))

0x000000000000000006b14bd1e6eea0000000000000000000000000000000

Converting image columns to binary types

You can use the convert function to convert animage column to binary or
varbinary. You are limited to the maximum length of the binary datatypes,
which isdetermined by the maximum column sizefor your server’slogical
page size. If you do not specify the length, the converted value has a
default length of 30 characters.

Converting other types to bit

Exact and approxi mate numeric types can be converted to the bit type
implicitly. Character types require an explicit convert function.

The expression being converted must consist only of digits, a decimal
point, acurrency symbol, and a plus or minus sign. The presence of other
characters generates syntax errors.

The bit equivalent of 0is0. Thebit equivalent of any other number is 1.

58

CHAPTER 2 Transact-SQL Functions

Converting NULL value

Date functions

Date parts

You can use the convert function to change the NULL to NOT NULL and
NOT NULL to NULL.

The date functions manipulate values of the datatype datetime or
smalldatetime.

Date functions can be used in the select list or where clause of a query.

Use the datetime datatype only for dates after January 1, 1753. datetime
values must be enclosed in single or double quotes. Use char, nchar,
varchar or nvarchar for earlier dates. Adaptive Server recognizes awide
variety of dateformats. See Datatype conversion functionsand “ Date and
time datatypes’ for more information.

Adaptive Server automatically converts between character and datetime
valueswhen necessary (for example, when you compare a character value
to adatetime value).

The date parts, the abbreviations recognized by Adaptive Server, and the
acceptable values are:

Date Part Abbreviation Values

year vy 1753 — 9999 (2079 for smalldatetime)
quarter qq 1-4

month mm 1-12

week wk 1-54

day dd 1-31
dayofyear dy 1-366
weekday dw 1-7(Sun.-Sat.)
hour hh 0-23

minute mi 0-59

second ss 0-59
millisecond ms 0-999

59

Mathematical functions

When you enter ayear as two digits (yy):

e Numberslessthan 50 areinterpreted as 20yy. For example, 01 is
2001, 32 is 2032, and 49 is 2049.

* Numbers equal to or greater than 50 are interpreted as 19yy. For
example, 50 is 1950, 74 is1974, and 99 is 1999.

Milliseconds can be preceded either with a colon or aperiod. If preceded
by a colon, the number means thousandths of a second. If preceded by a
period, asingledigit meanstenths of asecond, two digits mean hundredths
of asecond, and three digits mean thousandths of a second. For example,
“12:30:20:1" means twenty and one-thousandth of a second past 12:30;
“12:30:20.1" means twenty and one-tenth of a second past 12:30.
Adaptive Server may round or truncate millisecond values when adding
datetime data.

Mathematical functions

60

Mathematical functionsreturn values commonly needed for operations on
mathematical data. Mathematical function names are not keywords.

Each function also accepts arguments that can be implicitly converted to
the specified type. For example, functions that accept approximate
numeric types also accept integer types. Adaptive Server automatically
converts the argument to the desired type.

The mathematical functions are:

e abs

* acos

e asin

e atan

. atn2

* ceiling
* cos

e cot

* degrees

CHAPTER 2 Transact-SQL Functions

e exp
¢ floor

* log

* logl0o

. p|

* power
* radians
e rand

¢ round

* sign

¢ sin

e sqgrt

* tan

Error traps are provided to handle domain or range errors of these
functions. Users can set the arithabort and arithignore optionsto determine
how domain errors are handled:

e arithabort arith_overflow specifies behavior following adivide-by-zero
error or aloss of precision. The default setting, arithabort
arith_overflow on, rolls back the entire transaction or aborts the batch
in which the error occurs. If you set arithabort arith_overflow off,
Adaptive Server aborts the statement that causes the error, but
continues to process other statements in the transaction or batch.

e arithabort numeric_truncation specifies behavior following aloss of
scale by an exact numeric type during an implicit datatype
conversion. (When an explicit conversion resultsin aloss of scale, the
results are truncated without warning.) The default setting, arithabort
numeric_truncation on, aborts the statement that causes the error, but
continues to process other statements in the transaction or batch. If
you set arithabort numeric_truncation off, Adaptive Server truncatesthe
query results and continues processing.

61

Security functions

e By default, the arithignore arith_overflow option is turned off, causing
Adaptive Server to display awarning message after any query that
results in numeric overflow. Set the arithignore option on to ignore
overflow errors.

Note The arithabort and arithignore options have been redefined for
release 10.0 or later. If you use these options in your applications,
examine them to be sure they still produce the desired effects.

Security functions

String functions

62

Security functions return security-related information.
The security functions are:
* is_sec_service_on

* show_sec_services

String function operate on binary data, character strings, and expressions.
The string functions are:

* ascii

e char

¢ charindex

e char_length
* difference

* lower

* ltrim

* patindex

* replicate

CHAPTER 2 Transact-SQL Functions

* reverse
* right
e rtrim

e soundex

* space
e str
e stuff

e substring
e to_unichar
e uhighsurr
e ulowsurr

* upper

e uscalar

String functions can be nested, and they can be used in aselect list, ina
where clause, or anywhere an expression is allowed. When you use
constants with a string function, enclose them in single or double quotes.
String function names are not keywords.

Each string function also accepts arguments that can be implicitly
converted to the specified type. For example, functions that accept
approximate numeric expressions also accept integer expressions.
Adaptive Server automatically converts the argument to the desired type.

When a string function accepts two character expressions but only one
expression is unichar, the other expression is“promoted” and internally
converted to unichar. This follows existing rules for mixed-mode
expressions. However, thisconversion may causetruncation, since unichar
data sometimes takes twice the space.

Limits on string functions
Results of string functions are limited to 16K .

If set string_rtruncation iSon, auser receives an error if aninsert or update
truncates a character string. However, SQL Server doesnot report an error
if adisplayed string is truncated. For example:

63

System functions

select replicate("a", 900) + replicate("B", 900)
Displaysthefirst 16K of data, but the subsequent datais not displayed.

System functions

System functions return special information from the database. The
system functions are:

e col_length

e col_name

e curunreservedpgs
e data_pgs

e datalength

e db_id

e db_name

* host_id

* host_name

* index_col

e isnull

e Ict_admin

* mut_excl_roles
* object id

* object_name

* proc_role

* ptn_data_pgs

* reserved_pgs

* role_contain

e role_id

* role_name

64

CHAPTER 2 Transact-SQL Functions

* rowcnt

¢ show_role
e suser_id

* suser_name
e tsequal

e used_pgs

e user

e user_id

* user_name
e valid_name
e valid_user

The system functions can be used in a select list, in awhere clause, and
anywhere an expression is allowed.

When the argument to a system function is optional, the current database,
host computer, server user, or database user is assumed.

Text and image functions

Text and image functions operate on text and image data. The text and
image functions are:

* textptr
e textvalid

Text and image built-in function names are not keywords. Use the set
textsize option to limit the amount of text or image datathat isretrieved by
aselect statement.

The patindex text function can be used on text and image columns and can
also be considered a text and image function.

Use the datalength function to get the length of datain text and image
columns.

text and image columns cannot be used:

65

Text and image functions

66

As parameters to stored procedures

As values passed to stored procedures

Aslocal variables

In order by, compute, and group by clauses

In an index

In awhere clause, except with the keyword like
Injoins

In triggers

CHAPTER 3

Functions: abs — difference

abs

Description Returns the absolute value of an expression.

Syntax abs(numeric_expression)

Parameters numeric_expression

—isacolumn, variable, or expression whose datatype is an exact
numeric, approximate numeric, money, or any type that can be
implicitly converted to one of these types.

Examples sel ect abs(-1)

1
Returns the absolute value of -1.

Usage e abs, amathematical function, returns the absolute value of agiven
expression. Results are of the same type and have the same precision
and scale as the numeric expression.

» For general information about mathematical functions, see
“Mathematical functions” on page 60.

Standards SQL92 — Complience level: Transact-SQL extension

Permissions Any user can execute abs.

See also Functions — ceiling, floor, round, sign

acos

Description Returns the angle (in radians) whose cosineis specified.

Syntax acos(cosine)

67

ascii

Parameters

Examples

Usage

Standards
Permissions

See also

ascii
Description

Syntax

Parameters

Examples

68

cosine
—isthe cosine of the angle, expressed as a column name, variable, or
constant of typefloat, real, double precision, or any datatype that can be
implicitly converted to one of these types.

sel ect acos(0.52)

1. 023945
Returns the angle whose cosineis 0.52.

e acos, amathematical function, returns the angle (in radians) whose
cosineis the specified value.

e For genera information about mathematical functions, see
“Mathematical functions” on page 60.

SQL92 — Complience level: Transact-SQL extension
Any user can execute acos.

Functions — cos, degrees, radians

Returns the ASCII code for the first character in an expression.
ascii(char_expr|luchar_expr)

char_expr
—isacharacter-type column name, variable, or constant expression of
char, varchar, nchar or nvarchar type.

uchar_expr
—isacharacter-type column name, variable, or constant expression of
unichar or univarchar type.

sel ect au_l nane, ascii(au_l name) from authors
where ascii(au_l nane) < 70

au_l nane

Bennet 66
Bl otchet-Halls 66
Car son 67
DeFr ance 68
Dul | 68

CHAPTER 3 Functions: abs — difference

Usage

Standards
Permissions

See also

asin
Description

Syntax

Parameters

Examples

Usage

Standards

Permissions

Returns the authors last names and the ACSI| codes for thefirst lettersin
their last names, if the ASCII codeislessthan 70.

e ascii, astring function, returns the ASCII code for the first character
in the expression.

¢ When astring function accepts two character expressions but only
one expression is unichar, the other expression is“promoted” and
internally converted to unichar. Thisfollows existing rules for mixed-
mode expressions. However, this conversion may cause truncation,
since unichar data sometimes takes twice the space.

e If char_expr or uchar_expr isNULL, returns NULL.

¢ For general information about string functions, see“ String functions’
on page 62.

SQL92 — Complience level: Transact-SQL extension
Any user can execute ascii.

Functions — char, to_unichar

Returns the angle (in radians) whose sine is specified.
asin(sine)
sine
—isthe sine of the angle, expressed as a column name, variable, or

constant of type float, real, double precision, or any datatype that can be
implicitly converted to one of these types.

sel ect asin(0.52)

0. 546851

» asin, amathematical function, returns the angle (in radians) whose
sine is the specified value.

» For general information about mathematical functions, see
“Mathematical functions’ on page 60.

SQL92 — Complience level: Transact-SQL extension

Any user can execute asin.

69

atan

See also

atan

Description

Syntax

Parameters

Examples

Usage

Standards
Permissions

See also

atn2

Description

Syntax

Parameters

70

Functions — degrees, radians, sin

Returns the angle (in radians) whose tangent is specified.
atan(tangent)

tangent
—isthe tangent of the angle, expressed as a column name, variable, or
constant of typefloat, real, double precision, or any datatype that can be
implicitly converted to one of these types.

sel ect atan(0.50)

0. 463648

e atan, amathematical function, returns the angle (in radians) whose
tangent is the specified value.

e For genera information about mathematical functions, see
“Mathematical functions” on page 60.

SQL92 — Complience level: Transact-SQL extension
Any user can execute atan.

Functions — atn2, degrees, radians, tan

Returns the angle (in radians) whose sine and cosine are specified.
atn2(sine, cosine)
sine

—isthe sine of the angle, expressed as a column name, variable, or

constant of type float, real, double precision, or any datatype that can be
implicitly converted to one of these types.

CHAPTER 3 Functions: abs — difference

Examples

Usage

Standards
Permissions

See also

avg
Description

Syntax

Parameters

Examples

cosine
—isthe cosine of the angle, expressed as a column name, variable, or
constant of typefloat, real, double precision, or any datatype that can be
implicitly converted to one of these types.

sel ect atn2(.50, .48)

0. 805803

* atn2, amathematical function, returns the angle (in radians) whose
sine and cosine are specified.

» For general information about mathematical functions, see
“Mathematical functions’ on page 60.

SQL92 — Complience level: Transact-SQL extension
Any user can execute atn2.

Functions — atan, degrees, radians, tan

Returns the numeric average of all (distinct) values.

avg([all | distinct] expression)

all

—appliesavg to al values. all is the defaullt.
distinct

— eliminates duplicate values before avg isapplied. distinct is optional.
expression

—isacolumn name, constant, function, any combination of column
names, constants, and functions connected by arithmetic or bitwise
operators, or a subquery. With aggregates, an expression is usually a
column name. For more information, see “Expressions’ on page 179.

Example 1

sel ect avg(advance), sun{total _sales)
fromtitles
where type = "busi ness”

71

avg

Usage

72

6, 281. 25 30788

Calculates the average advance and the sum of total salesfor al business
books. Each of these aggregate functions producesasingle summary value
for all of theretrieved rows.

Example 2

sel ect type, avg(advance), sum(total _sal es)
fromtitles

group by type

type
UNDECI DED NULL NULL
busi ness 6, 281. 25 30788
nmod_cook 7, 500. 00 24278
popul ar _conp 7,500. 00 12875
psychol ogy 4, 255. 00 9939
trad_cook 6, 333. 33 19566

Used with agroup by clause, the aggregate functions produce single values
for each group, rather than for the whole table. This statement produces
summary values for each type of book.

Example 3

sel ect pub_id, sunm(advance), avg(price)
fromtitles

group by pub_id

havi ng sun(advance) > $25000 and avg(price) > $15

Groups the titles table by publishers and includes only those groups of
publishers who have paid more than $25,000 in total advances and whose
books average more than $15 in price.

pub_i d
0877 41, 000. 00 15. 41
1389 30, 000. 00 18. 98

e avg, an aggregate function, finds the average of the valuesin a
column. avg can only be used on numeric (integer, floating point, or
money) datatypes. Null values are ignored in cal cul ating averages.

CHAPTER 3 Functions: abs — difference

Standards
Permissions

See also

ceiling
Description

Syntax

Parameters

Examples

e For general information about aggregate functions, see “ Aggregate
functions’ on page 45.

« Whenyou averageinteger data, Adaptive Server treatstheresult asan
int value, even if the datatype of the column is smallint or tinyint. TO
avoid overflow errorsin DB-Library programs, declare al variables
for results of averages or sums astype int.

¢ You cannot use avg() with the binary datatypes.

¢ Sincethe average value is only defined on numeric datatypes, use
with Unicode expressions generates an error.

SQL92 — Complience level: Transact-SQL extension
Any user can execute avg.

Functions — max, min

Returns the smallest integer greater than or equal to the specified value.

ceiling(value)

value
—isacolumn, variable, or expression whose datatypeis exact numeric,
approximate numeric, money, or any type that can be implicitly
converted to one of these types.

Example 1
sel ect ceiling(123.45)
124

Example 2
sel ect ceiling(-123.45)
-123

Example 3
sel ect ceiling(1.2345E2)
24. 000000

73

char

Usage

Standards
Permissions

See also

char

Description

Syntax

74

Example 4
sel ect ceiling(-1.2345E2)
-123. 000000

Example 5
sel ect ceiling($123.45)
124. 00

Example 6

sel ect di scount, ceiling(discount) fromsal esdetai l
where title_id = "PS3333"

di scount
45, 000000 45, 000000
46. 700000 47. 000000
46. 700000 47. 000000
50. 000000 50. 000000

e ceiling, amathematical function, returns the smallest integer that is
greater than or equal to the specified value. The return value has the
same datatype as the value supplied.

For numeric and decimal val ues, results have the same precision asthe
value supplied and a scale of zero.

« For genera information about mathematical functions, see
“Mathematical functions” on page 60.

SQL92 — Complience level: Transact-SQL extension
Any user can execute ceiling.
Command — set

Functions — abs, floor, round, sign

Returns the character equivalent of an integer.

char(integer_expr)

CHAPTER 3 Functions: abs — difference

Parameters integer_expr

—isany integer (tinyint, smallint, or int) column name, variable, or
constant expression between 0 and 255.

Examples Example 1

Usage

sel ect char (42)

*

Example 2
sel ect xxx = char (65)

XXX

A

» char, astring function, converts a single-byte integer value to a
character value. (char is usually used as the inverse of ascii.)

» charreturnsachar datatype. If theresulting valueisthefirst byte of a
multibyte character, the character may be undefined.

e |If char_expr isNULL, returns NULL.

» For general information about string functions, see“ String functions’
on page 62.

Reformatting output with char

¢ You can use concatenation and char() values to add tabs or carriage
returns to reformat output. char(10) converts to a return; char(9)
convertsto atab.

For example:

/* just a space */

select title_id + " " + title fromtitles where title_id = "T67061"
/* a return */

select title_id + char(10) + title fromtitles where title_id = "T67061"
/* a tab */

select title_id + char(9) + title fromtitles where title_id = "T67061"

T67061

75

charindex

Programm ng with Curses

T67061
Standards
Permissions

See also

charindex

Description
Syntax

Parameters

Examples

Usage

76

Programm ng with Curses

SQL92 — Complience level: Transact-SQL extension
Any user can execute char.

Functions — ascii, str

Returns an integer representing the starting position of an expression.
charindex(expressionl, expression2)
expression

—isabinary or character column name, variable or constant expression.

Can be char, varchar, nchar, nvarchar, unichar or univarchar data, binary
or varbinary.

sel ect charindex("wonderful", notes)
fromtitles
where title id = "TC3218"

Returnsthe position at which the character expression “wonderful” begins
in the notes column of the titles table.

e charindex, astring function, searches expression2 for the first
occurrence of expressionl and returns an integer representing its
starting position. If expressionl is not found, charindex returns 0.

« |If expressionl contains wildcard characters, charindex treats them as
literals.

e |If char_expr or uchar_expr isNULL, returns NULL.

e |f avarchar expression is given as one parameter and a unichar
expression asthe other, the varchar expressionisimplicitly converted
to unichar (with possible truncation).

« For genera information about string functions, see“ String functions”
on page 62.

CHAPTER 3 Functions: abs — difference

Standards
Permissions

See also

char_length

Description

Syntax

Parameters

Examples

Usage

SQL92 — Complience level: Transact-SQL extension
Any user can execute charindex.

Function — patindex

Returns the number of charactersin an expression.
char_length(char_expr|uchar_expr)

char_expr
—isacharacter-type column name, variable, or constant expression of
char, varchar, nchar or nvarchar type.

uchar_expr
—isacharacter-type column name, variable, or constant expression of
unichar or univarchar type.

Example 1

sel ect char_l ength(notes) fromtitles
where title_id = "PC9999"

Example 2

decl are @ar 1l varchar(20), @ar2 varchar(20), @har
char (20)
sel ect @arl = "abcd", @ar2 = "abcd

@har = "abcd"
sel ect char_l ength(@arl), char_|l ength(@ar?2),
char _| engt h(@har)

e char_length, astring function, returns an integer representing the
number of charactersin a character expression or text value.

77

col_length

Standards
Permissions

See also

col_length

Description

Syntax

Parameters

Examples

78

e For variable-length columns and variables, char_length returnsthe
number of characters (not the defined length of the column or
variable). If explicit trailing blanks are included in variable-length
variables, they are not stripped. For literalsand fixed-length character
columns and variables, char_length does not strip the expression of
trailing blanks (see example 2).

e For multi-byte character sets, the number of charactersin the
expression isusually less than the number of bytes; use datalength to
determine the number of bytes.

« For Unicode expressions, returns the number of Unicode values (not
bytes) in an expression. Surrogate pairs count astwo Unicode values.

e |If char_expr or uchar_expr isNULL, char_length returns NULL.

« For genera information about string functions, see“ String functions”
on page 62.

SQL92 — Complience level: Transact-SQL extension
Any user can execute char_length.

Function — datalength

Returns the defined length of a column.

col_length(object_name, column_name)

object_name
—isname of adatabase object, such asatable, view, procedure, trigger,
default, or rule. The name can be fully qualified (that is, it can include
the database and owner name). It must be enclosed in quotes.

column_name
—isthe name of the column.

select x = col _length("titles", "title")

X

80

Finds the length of thetitle columnin thetitles table. The “X” givesa
column heading to the result.

CHAPTER 3 Functions: abs — difference

Usage

Standards
Permissions

See also

col_name

Description

Syntax

Parameters

Examples

Usage

e col_length, a system function, returns the defined length of column.

e For general information about system functions, see “ System
functions’ on page 64.

¢ Tofindtheactual length of the datastored in each row, usedatalength.

¢ For text and image columns, col_length returns 16, the length of the
binary(16) pointer to the actual text page.

¢ For unichar columns, the defined length is the number of Unicode
values declared when the column was defined (not the number of
bytes represented).

SQL92 — Complience level: Transact-SQL extension
Any user can execute col_length.

Function — datalength

Returnsthe name of the column whose table and column I Ds are specified.
col_name(object_id, column_id[, database_id])

object_id
—isanumeric expression that is an object ID for atable, view, or other
database object. These are stored in theid column of sysobjects.

column_id
—isanumeric expression that isacolumn ID of a column. These are
stored in the colid column of syscolumns.

database id
—isanumeric expression that isthe ID for a database. These are stored
in the db_id column of sysdatabases.

sel ect col _nanme(208003772, 2)

* col_name, asystem function, returns the column’s name.

» For general information about system functions, see “ System
functions’ on page 64.

79

compare

Standards
Permissions

See also

compare

Description

Syntax

Parameters

80

SQL92 — Complience level: Transact-SQL extension
Any user can execute col_name.

Functions—db_id, object_id

Allows you to directly compare two character strings based on alternate
collation rules

compare (char_expressionljuchar_expressionl),
(char_expression2|uchar_expression2)
[{collation_name | collation_ID}]

char_expressionl or uchar_expression 1
— are the character expressions you want to compare to
char_expression2 or uchar_expression 2.

char_expression2 or uchar_expression2
— are the character expressions against which you want to compare
char_expressionl or uchar_expressionl..

char_expressionl and char_expression2 can be one of the following:
e Character type (char, varchar, nchar, or nvarchar)
e Character variable, or

« Constant character expression, enclosed in single or double
guotation marks

uchar_expression1 and uchar_expression2 can be one of thefollowing:
e Character type (unichar or univarchar)
e Character variable, or

« Constant character expression, enclosed in single or double
guotation marks

collation_name
— can be aquoted string or a character variable that specifiesthe
collation to use. Table 3-1 shows the valid values.

collation_ID
—isan integer constant or avariable that specifies the collation to use.
Table 3-1 shows the valid values.

CHAPTER 3 Functions: abs — difference

Usage

The compare function returns the following values, based on the
collation rules that you chose:

e 1-indicatesthat char_expressionl or uchar_expressionl is
greater than char_expression2 or uchar_expression2.

¢ O-indicatesthat char_expressionl or uchar_expressionl is
equal to char_expression2 or uchar_expression2.

e -1l-indicatesthat char_expressionl or uchar_expressionlisless
than char_expression2 or uchar expression2.

Both char_expressionl, uchar_expressionl, and char_expression2
and uchar_expression2 must be characters that are encoded in the
server’'s default character set.

Either char_expressionl, uchar_expression 1, or char_expression2,
uchar_expression2, or both, can be empty strings:

e If char_expression2 or uchar_expression2 is empty, the function
returns 1.

e If both strings are empty, then they are equal, and the function
returns a0 value.

e Ifchar_expressionl or uchar_expression 1isempty, thefunction
returnsa-1.

The compare function does not equate empty strings and strings
containing only spaces, as does. compare usesthe sortkey function to
generate collation keys for comparison. Therefore, atruly empty
string, a string with one space, or a string with two spaces will not
compare equally.

If either char_expressionl, uchar_expressionl; or char_expression2,
uchar_expression2 is NULL, then the result will be NULL.

If avarchar expression is given as one parameter and a unichar
expression is given as the other, the varchar expression isimplicitly
converted to unichar (with possible truncation).

If you do not specify avalue for collation_name or collation ID,
compare assumes binary collation.

Table 3-1 liststhe valid values for collation_name and collation_ID.

Table 3-1: Collation names and IDs

Description

Collation name Collation ID

Binary sort

binary 50

81

convert

Description Collation name Collation ID
Default Unicode multilingual default 0
CP 850 Alternative no accent altnoacc 39
CP 850 Alternative lower casefirst atdict 45
CP 850 Alternative no case preference altnocsp 46
CP 850 Scandinavian dictionary scandict 47
CP 850 Scandinavian no case preference scannocp 48
GB Pinyin gbpinyin n/a
Latin-1 English, French, German dictionary dict 51
Latin-1 English, French, German no case nocase 52
Latin-1 English, French, German no case preference nocasep 53
Latin-1 English, French, German no accent noaccent 54
Latin-1 Spanish dictionary espdict 55
Latin-1 Spanish no case espnocs 56
Latin-1 Spanish no accent espnoac 57
1SO 8859-5 Cyrillic dictionary cyrdict 63
1SO 8859-5 Russian dictionary rusdict 58
1SO 8859-9 Turkish dictionary turdict 72
Shift-JIS binary order gisbin 259
Thai dictionary thaidict 1

Standards SQL92 — Complience level: Transact-SQL extension

Permissions Any user can execute compare.

See also Function — sortkey

convert

Description Returns the specified value, converted to another datatype or a different

datetime display format.

Syntax convert (datatype [(length) | (precision], scale])]
[null | not null], expression [, style])

82

CHAPTER 3 Functions: abs — difference

Parameters

datatype
—isthe system-supplied datatype (for example, char(10), unichar (10),
varbinary (50), or int) into which to convert the expression. You cannot
use user-defined datatypes.

When Javais enabled in the database, datatype can also be a Java-SQL
classin the current database.

length
—isan optional parameter used with char, nchar, unichar, univarchar,
varchar, nvarchar, binary and varbinary datatypes. If you do not supply a
length, Adaptive Server truncates the datato 30 characters for the
character types and 30 bytes for the binary types. The maximum
allowable length for character and binary expression is 64K.

precision
—isthe number of significant digitsin anumeric or decimal datatype.
For float datatypes, precision is the number of significant binary digits
in the mantissa. If you do not supply a precision, Adaptive Server uses
the default precision of 18 for numeric and decimal datatypes.

scale
—isthe number of digitsto theright of the decimal point in anumeric,
or decimal datatype. If you do not supply ascale, Adaptive Server uses
the default scale of 0.

null | not null
— specifies the nullabilty of the result expression. If you do not supply
either null or not null, the converted result has the same nullability asthe
expression.

expression
—isthe value to be converted from one datatype or date format to
another.

When Javais enabled in the database, expression can be avalue to be
converted to a Java-SQL class.

When Unichar is used asthe destination data type, the default length of
30 Unicode valuesis used if no length is specified.

83

convert

style
isthe display format to use for the converted data. When converting
money or smallmoney datato acharacter type, useastyle of 1todisplay
acomma after every 3 digits.

When converting datetime or smalldatetime datato acharacter type, use
the style numbers in Table 3-2 to specify the display format. Valuesin
the left-most column display 2-digit years (yy). For 4-digit years
(yyyy), add 100, or use the value in the middle column.

Table 3-2: Display formats for date/time information

Without Century (yy)

With Century (yyyy) Output

N/A 0or 100 mon dd yyyy hh:miAM (or PM)

1 101 mm/dd/yy

2 102 yy.mm.dd

3 103 dd/mm/yy

4 104 dd.mm.yy

5 105 dd-mm-yy

6 106 dd mon yy

7 107 mon dd, yy

8 108 hh:mm:ss

N/A 9or 109 mon dd yyyy hh:mi:ss:mmmAM (or PM)

10 110 mm-dd-yy

11 m yy/mm/dd

12 112 yymmadd
Thedefault values (style 0 or 100), and style 9 or 109 return the century
(yyyy). When converting to char or varchar from smalldatetime, styles
that include seconds or milliseconds show zeros in those positions.

Examples Example 1

84

select title, convert(char(12), total _sales)
fromtitles

Example 2

select title, total sales
fromtitles
where convert(char(20), total _sales) |ike "1%

Example 3
sel ect convert(char(12), getdate(), 3)
Converts the current date to style 3", dd/mm/yy .

CHAPTER 3 Functions: abs — difference

Usage

Example 4
sel ect convert(varchar(12), pubdate, 3) fromtitles

If the value pubdate can be null, you must use varchar rather than char, or
errors may result.

Example 5
sel ect convert (i nteger, 0x00000100)

Returns the integer equivalent of the string “0x00000100". Results can
vary from one platform to another.

Example 6
sel ect convert (binary, 10)
Returns the platform-specific bit pattern as a Sybase binary type.
Example 7
sel ect convert(bit, $1.11)
Returns 1, the bit string equivalent of $1.11.
Example 8

select title, convert (char(100) not null,
total _sal es) into #tenpsales
fromtitles

Creates #tempsales with total_sales of datatype char(100), and does not
allow null values. Even if titles.total_sales was defined as allowing nulls,
#tempsales is created with #tempsales.total_sales not allowing null values.

e convert, adatatype conversion function, converts between awide
variety of datatypes and reformats date/time and money data for

display purposes.

¢ For more information about datatype conversion, see “ Datatype
conversion functions” on page 51.

e convert() generatesadomain error when the argument fallsoutside the
range over which the function is defined. This should happen rarely.

e Usenull or not null to specify the nullability of atarget column.
Specifically, this can be used with select into to create anew table and
change the datatype and nullability of existing columnsin the source
table (See example 8, above).

85

Cos

Standards
Permissions

See also

COS

Description

86

You can use convert to convert an image column to binary or varbinary.
You are limited to the maximum length of the binary datatypes, which
is determined by the maximum column size for your server’slogical
page size. If you do not specify the length, the converted value has a
default length of 30 characters.

Unichar expressions can be used as a destination datatype or they can
be converted to another data type. Unichar expresssions can be
converted either explicitly between any other data type supported by
the server, or implicitly.

If lengthis not specifed when unichar is used asadestination type, the
default length of 30 Unicode valuesis used. If the length of the
destination type is not large enough to accommodate the given
EXPression, as error message appears.

Conversions involving Java classes

When Java is enabled in the database, you can use convert to change
datatypes in these ways:

« Convert Java object typesto SQL datatypes.
e Convert SQL datatypesto Javatypes.

e Convert any Java-SQL classinstalled in Adaptive Server to any
other Java-SQL classinstalled in Adaptive Server if the compile-
time datatype of the expression (the source class) isasubclass or
superclass of the target class.

The result of the conversion is associated with the current database.

See Java in Adaptive Server Enterprisefor alist of allowed datatype
mappings and more information about datatype conversions
involving Java classes.

SQL92 — Complience level: Transact-SQL extension

Any user can execute convert.

Datatypes — User-defined datatypes

Functions — hextoint, inttohex

Returns the cosine of the specified angle.

CHAPTER 3 Functions: abs — difference

Syntax

Parameters

Examples

Usage

Standards
Permissions

See also

cot

Description

Syntax

Parameters

Examples

Usage

Standards
Permissions

See also

cos(angle)

angle
—isany approximate numeric (float, real, or double precision) column
name, variable, or constant expression.

sel ect cos(44)
0. 999843

» cos, amathematical function, returnsthe cosine of the specified angle
(inradians).

» For general information about mathematical functions, see
“Mathematical functions’ on page 60.

SQL92 — Complience level: Transact-SQL extension
Any user can execute cos.

Functions — acos, degrees, radians, sin

Returns the cotangent of the specified angle.
cot(angle)

angle
—isany approximate numeric (float, real, or double precision) column
name, variable, or constant expression.

sel ect cot (90)

-0. 501203

« cot, amathematical function, returns the cotangent of the specified
angle (in radians).

e For genera information about mathematical functions, see
“Mathematical functions’ on page 60.

SQL92 — Complience level: Transact-SQL extension
Any user can execute cot.

Functions — degrees, radians, sin

87

count

count

Description

Syntax

Parameters

Examples

Usage

88

Returns the number of (distinct) non-null values or the number of selected
rows.

count([all | distinct] expression)

all
—applies count to al values. all is the default.

distinct
— eliminatesduplicateval uesbeforecountisapplied. distinctisoptional.

expression
is acolumn name, constant, function, any combination of column
names, constants, and functions connected by arithmetic or bitwise
operators, or a subquery. With aggregates, an expression is usually a
column name. For more information, see “ Expressions’ on page 179.

Example 1

sel ect count(distinct city)
from aut hors

Finds the number of different citiesin which authorslive.
Example 2

sel ect type

fromtitles

group by type

havi ng count (*) > 1
Liststhe typesin thetitles table, but eliminates the types that include only
one book or none.

e count, an aggregate function, finds the number of non-null valuesina
column. For general information about aggregate functions, see
“Aggregate functions” on page 45.

* Whendistinct is specified, count finds the number of unique non-null
values. count can be used with all datatypes, including unichar, but
cannot be used with text and image. Null values are ignored when
counting.

e count(column_name) returnsavalue of 0 on empty tables, on columns
that contain only null values, and on groups that contain only null
values.

CHAPTER 3 Functions: abs — difference

e count(*) finds the number of rows. count(*) does not take any
arguments, and cannot be used with distinct. All rows are counted,
regardless of the presence of null values.

¢ When tables are being joined, include count(*) in the select list to
produce the count of the number of rowsin the joined results. If the
objective isto count the number of rows from one table that match
criteria, use count(column_name).

e count() can be used as an existence check in a subquery. For example:

select * fromtab where 0 <
(select count(*) fromtab2 where ...)

However, because count() counts all matching values, exists or in may
return results faster. For example:

select * fromtab where exists

(select * fromtab2 where ...)
Standards SQL92 — Complience level: Transact-SQL extension
Permissions Any user can execute count.
See also Commands — compute Clause, group by and having Clauses, select, where
Clause
curunreservedpgs
Description Returns the number of free pages in the specified disk piece.
Syntax curunreservedpgs(dbid, Istart, unreservedpgs)
Parameters dbid
—isthe ID for adatabase. These are stored in the db_id column of
sysdatabases.
Istart
—isapage within the disk piece for which pages are to be returned.
unreservedpgs
—isthedefault valueto returnif the dbtableispresently unavailablefor
the requested database.
Examples Example 1

sel ect db_nane(dbid), d.nane,
curunreservedpgs(dbid, |start, unreservedpgs)

89

data_pgs

Usage

Standards
Permissions

See also

data_pgs

Description

Syntax

90

from sysusages u, sysdevices d
where d.low <= u.size + vstart
and d. high >= u.size + vstart -1
and d.status & = 2

mast er mast er 184
mast er mast er 832
t enpdb mast er 464
t enpdb mast er 1016
t enpdb mast er 768
nodel mast er 632
sybsyst enpr ocs nmast er 1024
pubs2 nmast er 248

Returns the database name, device name, and the number of unreserved
pages for each device fragment.

Example 2
sel ect curunreservedpgs (dbid, sysusages.lstart, 0)

Displays the number of free pages on the segment for dbid starting on
sysusages.Istart.

e curunreservedpgs, asystem function, returnsthe number of free pages
in adisk piece. For general information about system functions, see
“System functions’ on page 64.

e |f the database is open, the value is taken from memory; if the
database is not in use, the value is taken from the unreservedpgs
column in sysusages.

SQL92 — Complience level: Transact-SQL extension
Any user can execute curunreservedpgs.

Functions —db_id, Ict_admin

Returns the number of pages used by the specified table or index.

data_pgs(object_id,
{data_oam_pg_id | index_oam_pg_id})

CHAPTER 3 Functions: abs — difference

Parameters

Examples

Usage

object_id
—isanobject ID for atable, view, or other database object. These are
stored in the id column of sysobjects.

data_ oam pg_id
—isthepage ID for adata OAM page, stored in the doampg column of
sysindexes.

index_oam pg_id
—isthe page ID for an index OAM page, stored in the ioampg column
of sysindexes.

Example 1

sel ect sysobj ects. nane,
Pages = data_pgs(sysi ndexes.id, doanpg)
from sysi ndexes, sysobjects
where sysindexes.id = sysobjects.id
and sysindexes.id > 100
and (indid =1 or indid = 0)

Estimatesthe number of data pages used by user tables (which have object
IDsthat are greater than 100). An indid of O indicates a table without a
clustered index; an indid of 1 indicates atable with a clustered index. This
example does not include nonclustered indexes or text chains.

Example 2

sel ect sysobj ects. nane,
Pages = data_pgs(sysi ndexes.id, ioanpg)
from sysi ndexes, sysobjects
where sysindexes.id = sysobjects.id
and sysindexes.id > 100
and (indid > 1)

Estimatesthe number of data pages used by user tables (which have object
IDsthat are greater than 100), nonclustered indexes, and page chains.

* data_pgs, asystem function, returns the number of pages used by a
table (doampg) or index (ioampg). You must use this function in a
guery run against the sysindexes table. For more information on
system functions, see “ System functions’ on page 64.

» data_pgs works only on objectsin the current database.

» Theresult does not include pages used for internal structures. To see
areport of the number of pages for the table, clustered index, and
internal structures, use used_pgs.

91

datalength

Standards
Permissions

See also

datalength

Description

Syntax

Parameters

Examples

92

Accuracy of results

» |If used on thetransaction log (syslogs), the result may not be accurate
and can be off by up to 16 pages.

Errors

e Instead of returning an error, data_pgs returns 0 if any of the
following are true:

e Theobject_id does not exist in sysobjects

e Thecontrol_page id does not belong to the table specified by
object_id

e Theobject idis-1

e Thepage idis-1
SQL92 — Complience level: Transact-SQL extension
Any user can execute data_pgs.
Functions — object_id, rowent

System procedure —sp_spaceused

Returns the actual length, in bytes, of the specified column or string.

datalength(expression)

expression
—isacolumn name, variable, constant expression, or a combination of
any of these that evaluates to a single value. It can be of any datatype.
expression is usually a column name. If expression is a character
constant, it must be enclosed in quotes.

sel ect Length = datal engt h(pub_nane)
from publishers

Finds the length of the pub_name column in the publishers table.

CHAPTER 3 Functions: abs — difference

Usage

Standards
Permissions

See also

dateadd

Description

Syntax

Parameters

Examples

e datalength, a system function, returns the length of expressionin
bytes.

e datalength finds the actual length of the data stored in each row.
datalength is useful on varchar univarhcar, varbinary, text and image
datatypes, since these datatypes can store variabl e lengths (and do not
store trailing blanks). When a char or unichar value is declared to
allow nulls, Adaptive Server storesit internally as varchar or
univarchar. For all other datatypes, datalength reports their defined
length.

e datalength of any NULL datareturns NULL.
SQL92 — Complience level: Transact-SQL extension
Any user can execute datalength.

Functions — char_length, col_length

Returns the date produced by adding a given number of years, quarters,
hours, or other date parts to the specified date.

dateadd(date_part, integer, date)

date part
—isadate part or abbreviation. For alist of the date parts and
abbreviationsrecognized by Adaptive Server, see“ Date parts’ on page
59.

numeric
—isan integer expression.

date
—iseither the function getdate, a character string in one of the
acceptable date formats, an expression that evaluates to avalid date
format, or the name of a datetime column.

sel ect newpubdate = dateadd(day, 21, pubdate)
fromtitles

Displays the new publication dates when the publication dates of all the
booksin the titles table dip by 21 days.

93

datediff

Usage

Standards
Permissions

See also

datediff

Description

Syntax

Parameters

94

« dateadd, adatefunction, addsaninterval to aspecified date. For more
information about date functions, see “Date functions’ on page 59.

e dateadd takes three arguments—the date part, a number, and a date.
Theresult isadatetime value equal to the date plusthe number of date
parts.

If the date argument is a smalldatetime value, the result isalso a
smalldatetime. You can use dateadd to add seconds or millisecondsto
asmalldatetime, but it ismeaningful only if theresult date returned by
dateadd changes by at |east one minute.

e Usethe datetime datatype only for dates after January 1, 1753.
datetime values must be enclosed in single or double quotes. Usechar,
nchar, varchar or nvarchar for earlier dates. Adaptive Server
recoghizes awide variety of date formats. For more information, see
“User-defined datatypes’ on page 38 and “ Datatype conversion
functions” on page 51.

Adaptive Server automatically converts between character and
datetime values when necessary (for example, when you compare a
character value to a datetime value).

e Using the date part weekday or dw with dateadd is not logical, and
produces spurious results. Use day or dd instead.

SQL92 — Complience level: Transact-SQL extension
Any user can execute dateadd.

Datatypes — Date and time datatypes

Commands — select, where Clause

Functions — datediff, datename, datepart, getdate

Returns the difference between two dates.

datediff(datepart, datel, date2)

datepart
—isadate part or abbreviation. For alist of the date parts and
abbreviationsrecognized by Adaptive Server, see”Date parts’ on page
59.

CHAPTER 3 Functions: abs — difference

Examples

Usage

datel
— can be either the function getdate, a character string in an acceptable
date format, an expression that evaluates to avalid date format, or the
name of a datetime column.

date2
— can be either the function getdate, a character string in an acceptable
date format, an expression that evaluates to avalid date format, or the
name of a datetime or smalldatetime column.

sel ect newdate = datediff(day, pubdate, getdate())
fromtitles

This query finds the number of days that have elapsed between pubdate
and the current date (obtained with the getdate function).

e datediff, a date function, calculates the number of date parts between
two specified dates. For more information about date functions, see
“Date functions” on page 59.

¢ datediff takes three arguments. Thefirst isadate part. The second and
third are dates. The result is asigned integer value equal to date2 -
datel, in date parts.

e datediff produces results of datatypeint, and causes errorsif the result
isgreater than 2,147,483,647. For milliseconds, thisis approximately
24 days, 20:31.846 hours. For seconds, thisis 68 years, 19 days,
3:14:07 hours.

e datediff results are always truncated, not rounded, when the result is
not an even multiple of the date part. For example, using hour as the
date part, the difference between “4:00AM” and “5:50AM” is 1.

When you use day as the date part, datediff counts the number of
midni ghts between the two times specified. For example, the
difference between January 1, 1992, 23:00 and January 2, 1992, 01:00
is 1; the difference between January 1, 1992 00:00 and January 1,
1992, 23:59is0.

¢ Themonth datepart counts the number of first-of-the-months between
two dates. For example, the difference between January 25 and
February 2 is 1; the difference between January 1 and January 31is0.

¢ When you use the date part week with datediff, you get the number of
Sundays between the two dates, including the second date but not the
first. For example, the number of weeks between Sunday, January 4
and Sunday, January 11 is 1.

95

datename

Standards
Permissions

See also

datename

Description

Syntax

Parameters

Examples

Usage

96

e |f smalldatetime valuesare used, they are converted to datetime values
internally for the calculation. Seconds and millisecondsin
smalldatetime values are automatically set to O for the purpose of the
difference calculation.

SQL92 — Complience level: Transact-SQL extension
Any user can execute datediff.

Datatypes — Date and time datatypes

Commands — select, where Clause

Functions — dateadd, datename, datepart, getdate

Returns the name of the specified part of a datetime value.

datename (datepart, date)

datepart
—isadate part or abbreviation. For alist of the date parts and
abbreviations recognized by Adaptive Server, see”Date parts’ on page
59.

date
— can be either the function getdate, a character string in an acceptable
date format, an expression that evaluatesto avalid date format, or the
name of a datetime or smalldatetime column.

sel ect datenane(nonth, getdate())
Novenber
This example assumes a current date of November 20, 2000.

* datename, adate function, returnsthe name of the specified part (such
asthe month “June”) of adatetime or smalldatetime value, asa
character string. If the result is numeric, such as* 23" for theday, itis
still returned as a character string.

* For more information about date functions, see “ Date functions” on
page 59.

e Thedate part weekday or dw returns the day of the week (Sunday,
Monday, and so on) when used with datename.

CHAPTER 3 Functions: abs — difference

Standards
Permissions

See also

datepart

Description

Syntax

Parameters

¢ Since smalldatetime is accurate only to the minute, when a
smalldatetime valueis used with datename, seconds and milliseconds
are awaysO0.

SQL92 — Complience level: Transact-SQL extension
Any user can execute datename.

Datatypes — Date and time datatypes\

Commands — select, where Clause

Functions — dateadd, datename, datepart, getdate

Returns the integer value of the specified part of adatetime value.

datepart(date_part, date)

date part
—isadate part. Table 3-3 lists the date parts, the abbreviations
recognized by datepart, and the acceptable values.

97

datepart

Examples

98

Table 3-3: Date parts and their values

Date Part Abbreviation Values

year yy 1753 — 9999 (2079 for smalldatetime)
quarter qq 1-4

month mm 1-12

week wk 1-54

day dd 1-31
dayofyear dy 1-366
weekday dw 1-7(Sun.-Sat.)
hour hh 0-23

minute mi 0-59

second ss 0-59
millisecond ms 0-999
calweekofyear cwk 1-53
calyearofweek cyr 1753 — 9999
caldayofweek cdw 1-7

When you enter ayear as two digits (yy):

e Numberslessthan 50 areinterpreted as 20yy. For example, 01 is
2001, 32 is 2032, and 49 is 2049.

* Numbers equal to or greater than 50 are interpreted as 19yy. For
example, 50 is1950, 74 51974, and 99 is1999.

Milliseconds can be preceded by either a colon or a period. If
preceded by acolon, the number means thousandths of a second. If
preceded by a period, a single digit means tenths of a second, two
digits mean hundredths of a second, and three digits mean
thousandths of a second. For example, “12:30:20:1" means twenty
and one-thousandth of a second past 12:30; “12:30:20.1" means
twenty and one-tenth of a second past 12:30.

date

— can be either the function getdate, a character string in an acceptable
date format, an expression that evaluatesto avalid date format, or the
name of a datetime or smalldatetime column.

Example 1

sel ect datepart(nonth, getdate())

CHAPTER 3 Functions: abs — difference

Usage

This example assumes a current date of November 25, 1995.
Example 2

sel ect datepart(year, pubdate) fromtitles where
type = "trad_cook"

Example 3

sel ect datepart(cwk,’'1993/01/01")

Example 4

sel ect datepart(cyr,’1993/01/01")

Example 5

sel ect datepart(cdw, ' 1993/01/01")

» datepart, adatefunction, returnsaninteger valuefor the specified part

of adatetime value. For more information about date functions, see
“Date functions” on page 59.

¢ datepart returns a number that follows |SO standard 8601, which

defines the first day of the week and the first week of the year.
Depending on whether the datepart function includes a value for
calweekofyear, calyearofweek, or caldayorweek, the date returned may
bedifferent for the same unit of time. For example, if Adaptive Server
is configured to use US English as the default language:

datepart(cyr, "1/1/1989")
returns 1988, but:

datepart (yy, "1/1/1989)
returns 1989.

99

db_id

Standards
Permissions

See also

db_id

Description

Syntax

100

This disparity occurs because the ISO standard defines the first week
of theyear asthe first week that includes a Thursday and begins with
Monday.

For servers using US English as their default language, the first day
of the week as Sunday, and the first week of the year isthe week that
contains January 4th.

e Thedate part weekday or dw returns the corresponding number when
used with datepart. The numbers that correspond to the names of
weekdays depend on the datefirst setting. Some language defaults
(including us_english) produce Sunday=1, Monday=2, and so on;
others produce Monday=1, Tuesday=2, and so on.The default
behavior can be changed on a per-session basis with set datefirst.

» calweekofyear, which can be abbreviated as cwk, returns the ordinal
position of the week within the year. calyearofweek, which can be
abbreviated as cyr, returns the year in which the week begins.
caldayofweek, which can abbreviated as cdw, returns the ordinal
position of the day within the week. You cannot use calweekofyear,
calyearofweek, and caldayofweek asdate partsfor dateadd, datediff and
datename.

e Since smalldatetime is accurate only to the minute, when a
smalldatetime value is used with datepart, seconds and milliseconds
are dwaysO0.

e Thevalues of the weekday date part are affected by the language
setting.

SQL92 — Complience level: Transact-SQL extension
Any user can execute datepart.

Datatypes — Date and time datatypes

Commands — select, where Clause

Functions — dateadd, datediff, datename, getdate

Returns the ID number of the specified database.

db_id(database_name)

CHAPTER 3 Functions: abs — difference

Parameters

Examples

Usage

Standards
Permissions

See also

db_name

Description

Syntax

Parameters

Examples

Usage

database_name
—isthe name of a database. database name must be a character
expression. If it isaconstant expression, it must be enclosed in quotes.

sel ect db_id("sybsystenprocs")

e db_id, asystem function, returns the database ID number.

e If you do not specify adatabase name, db_id returns the ID number
of the current database.

¢ For general information about system functions, see “ System
functions’ on page 64.

SQL92 — Complience level: Transact-SQL extension
Any user can execute db_id.

Functions —db_name, object_id

Returns the name of the database whose ID number is specified.

db_name([database_id])

database id
—isanumeric expression for the database ID (stored in
sysdatabases.dbid).

Example 1

sel ect db_nane()
Returns the name of the current database.
Example 2

sel ect db_nane(4)

sybsyst enprocs
¢ db_name, asystem function, returns the database name.

101

degrees

Standards
Permissions

See also

degrees

Description

Syntax

Parameters

Examples

Usage

Standards
Permissions

See also

102

e If nodatabase idissupplied, db_name returnsthe name of the
current database.

e For general information about system functions, see “ System
functions” on page 64.

SQL92 — Complience level: Transact-SQL extension
Any user can execute db_name.

Functions — col_name, db_id, object_name

Returns the size, in degrees, of an angle with the specified number of
radians.

degrees(numeric)

numeric
—isanumber, in radians, to convert to degrees.

sel ect degrees(45)

e degrees, amathematical function, converts radians to degrees.
Results are of the same type as the numeric expression.

For numeric and decimal expressions, the results have an internal
precision of 77 and a scale equal to that of the expression.

When money datatypes are used, internal conversion to float may
cause loss of precision.

e For genera information about mathematical functions, see
“Mathematical functions” on page 60.

SQL92 — Complience level: Transact-SQL extension
Any user can execute degrees.

Functions —radians

CHAPTER 3 Functions: abs — difference

difference

Description
Syntax

Parameters

Examples

Usage

Returns the difference between two soundex values.
difference(char_exprljuchar_exprl), (char_expr2| uchar_expr2)

char_exprl
—isacharacter-type column name, variable, or constant expression of
char, varchar, nchar or nvarchar type.

char_expr2
— isanother character-type column name, variable, or constant
expression of char, varchar, nchar or nvarchar type.

uchar_exprl
—isacharacter-type column name, variable, or constant expression of
unichar type.

uchar_expr2
— isanother character-type column name, variable, or constant
expresssion of unichar type.

Example 1

select difference("smthers", "smothers")

Example 2

sel ect difference("snothers", "brothers")

» difference, a string function, returns an integer representing the
difference between two soundex values.

» Thedifference function compares two strings and evaluates the
similarity between them, returning avaluefrom 0 to 4. The best match
is4.

Thestring values must be composed of acontiguous sequence of valid
single- or double-byte roman letters.

» If char_exprl, uchar_exprl, or char_expr2, uchar_expr2 isNULL,
returns NULL.

103

difference

Standards
Permissions

See also

104

e |If avarchar expression is given as one parameter and a unichar
expression is given as the other, the varchar expression isimplicitly
converted to unichar (with possible truncation).

« For genera information about string functions, see“ String functions”
on page 62.

SQL92 — Complience level: Transact-SQL extension
Any user can execute difference.

Functions — soundex

CHAPTER 4

exp

Description

Syntax

Parameters

Examples

Usage

Standards
Permissions

See also

floor

Description

Syntax

Parameters

Functions: exp — mut_excl _roles

Returns the value that results from raising the constant e to the specified
power.

exp(approx_numeric)

approx_numeric
—isany approximate numeric (float, real, or double precision) column
name, variable, or constant expression.

sel ect exp(3)

20. 085537

e exp, amathematical function, returns the exponential value of the
specified value.

» For general information about mathematical functions, see
“Mathematical functions” on page 60.

SQL92 — Complience level: Transact-SQL extension
Any user can execute exp.

Functions —log, log10, power

Returnsthe largest integer that is less than or equal to the specified value.

floor(numeric)

numeric
—isany exact numeric (numeric, dec, decimal, tinyint, smallint, Or int),
approximate numeric (float, real, or double precision), or money column,
variable, constant expression, or a combination of these.

105

floor

Examples Example 1

sel ect floor(123)

Example 2

sel ect floor(123.45)

Example 3

sel ect floor(1.2345E2)

123. 000000
Example 4
sel ect floor(-123.45)

Example 5

sel ect floor(-1.2345E2)

-124. 000000
Example 6

sel ect floor($123.45)

Usage e floor, amathematical function, returns the largest integer that is less
than or equal to the specified value. Results are of the sametypeasthe
numeric expression.

For numeric and decimal expressions, the results have a precision
equal to that of the expression and a scale of 0.

» For general information about mathematical functions, see
“Mathematical functions” on page 60.

Standards SQL92 — Complience level: Transact-SQL extension

106

CHAPTER 4 Functions: exp — mut_excl_roles

Permissions

See also

getdate

Description

Syntax

Parameters

Examples

Usage

Standards
Permissions

See also

Any user can execute floor.

Functions — abs, ceiling, round, sign

Returns the current system date and time.

getdate()
None.

Example 1
sel ect getdate()
Nov 25 1995 10: 32AM
Example 2
sel ect datepart(nonth, getdate())
1
Example 3
sel ect datenane(nonth, getdate())

Novenber

These exampl es assume a current date of November 25, 1995, 10:32 am.

» getdate, adate function, returns the current system date and time.

» For more information about date functions, see “Date functions” on

page 59.

SQL92 — Complience level: Transact-SQL extension

Any user can execute getdate.
Datatypes — Date and time datatypes

Functions — dateadd, datediff, datename, datepart

107

hextoint

hextoint

Description

Syntax

Parameters

Examples

Usage

Standards
Permissions

See also

host_id
Description

Syntax

Parameters

108

Returns the platform-independent integer equivalent of a hexadecimal
string.
hextoint (hexadecimal_string)

hexadecimal _string
—isthe hexadecimal value to be converted to an integer. This must be
either acharacter type column or variable name or avalid hexadecimal
string, with or without a“0x” prefix, enclosed in quotes.

sel ect hextoint ("0x00000100")

Returns the integer equivalent of the hexadecimal string “0x00000100".
Theresult is always 256, regardless of the platform on whichiit is
executed.

e hextoint, a datatype conversion function, returns the platform-
independent integer equivalent of a hexadecimal string.

« Usethe hextoint function for platform-independent conversions of
hexadecimal datato integers. hextoint accepts a valid hexadecimal
string, with or without a“0x” prefix, enclosed in quotes, or the name
of acharacter type column or variable.

hextoint returns the integer equivalent of the hexadecimal string. The
function always returns the same integer equivalent for agiven
hexadecimal string, regardless of the platform on whichit isexecuted.

« For more information about datatype conversion, see “ Datatype
conversion functions” on page 51.

SQL92 — Complience level: Transact-SQL extension
Any user can execute hextoint.

Functions — convert, inttohex

Returns the host process ID or the client process.
host_id()
None.

CHAPTER 4 Functions: exp — mut_excl_roles

Examples

Usage

Standards
Permissions

See also

host _name

Description

Syntax

Parameters

Examples

Usage

Standards
Permissions

See also

sel ect host _id()

* host_id, asystem function, returns the host process ID of the client
process (not the Server process).

» For general information about system functions, see “ String
functions’ on page 62.

SQL92 — Complience level: Transact-SQL extension
Any user can execute host_id.

Function —host_name

Returns the current host computer name of the client process.

host_name()

None.

sel ect host_namne()

vi ol et

¢ host_name, asystem function, returnsthe current host computer name
of the client process (not the Server process).

e For general information about system functions, see “ System
functions’ on page 64.

SQL92 — Complience level: Transact-SQL extension
Any user can execute host_name.

Function —host_id

109

index_col

index_col

Description

Syntax

Parameters

Examples

Usage

Standards
Permissions

See also

110

Returns the name of the indexed column in the specified table or view.

index_col (object_name, index_id, key_# [, user_id])

object_name
—isthe name of atable or view. The name can be fully qualified (that
is, it can include the database and owner name). It must be enclosed in
quotes.

index_id
—isthe number of object_name’sindex. Thisnumber isthe sameasthe
value of sysindexes.indid.

key_
#—isakey intheindex. Thisvalueis between 1 and sysindexes.keycnt

for aclustered index and between 1 and sysindexes.keycnt+1 for a
nonclustered index.

user_id
—istheowner of object_name. If you do not specify user_id, it defaults
to the caller’s user ID.

decl are @eycnt integer

sel ect @eycnt = keycnt from sysindexes
where id = object_id("t4")
and indid = 1

whil e @eycnt > 0

begin
sel ect index_col ("t4", 1, @eycnt)
sel ect @eycnt = @eycnt - 1

end

Finds the names of the keysin the clustered index on table t4.
* index_col, asystem function, returns the name of the indexed column.
e index_col returns NULL if object nameis not atable or view name.

e For general information about system functions, see “ String
functions” on page 62.

SQL92 — Complience level: Transact-SQL extension
Any user can execute index_col.
Functions — object_id

System procedures — sp_helpindex

CHAPTER 4 Functions: exp — mut_excl_roles

index_colorder

Description

Syntax

Parameters

Examples

Usage

Standards

Permissions

Returns the column order.

index_colorder (object_name, index_id, key_#
[, user_id])

object_name
—isthe name of atable or view. The name can be fully qualified (that
is, it can include the database and owner name). It must be enclosed in
quotes.

index _id
—isthe number of object_name’sindex. Thisnumber isthe same asthe
value of sysindexes.indid.

key_
#—isakey intheindex. Valid values are 1 and the number of keysin
the index. The number of keysis stored in sysindexes.keycnt.

user_id
—isthe owner of object_name. If you do not specify user_id, it defaults
tothecaller'suser ID.

sel ect nane, index_col order("sales", indid, 2)
from sysi ndexes

where id = object_id ("sal es")

and indid >0

sal esi nd DESC

Returns “DESC” because the salesind index on the sales tableisin
descending order.

* index_colorder, a system function, returns “ASC” for columnsin
ascending order or “DESC” for columns in descending order.

* index_colorder returns NULL if object_nameis not atable name or if
key #isnot avalid key number.

* For general information about system functions, see “ String
functions’ on page 62.

SQL92 — Complience level: Transact-SQL extension

Any user can execute index_colorder.

111

inttohex

inttohex

Description

Syntax

Parameters

Examples

Usage

Standards
Permissions

See also

isnull

Description

Syntax

Parameters

112

Returnsthe platform-independent hexadecimal equivalent of the specified
integer.

inttohex (integer_expression)

integer_expression
—istheinteger value to be converted to a hexadecimal string.

sel ect inttohex (10)

0000000A

e inttohex, a datatype conversion function, returns the platform-
independent hexadecimal equivalent of an integer, without a “0x”
prefix.

e Usetheinttohex function for platform-independent conversions of
integers to hexadecimal strings. inttohex accepts any expression that
evaluates to an integer. It dways returns the same hexadecimal
equivalent for agiven expression, regardless of the platform onwhich
it is executed.

e For more information about datatype conversion, see “ Datatype
conversion functions’” on page 51.

SQL92 — Complience level: Transact-SQL extension
Any user can execute inttohex.

Functions — convert, hextoint

Substitutes the value specified in expression2 when expressionl evaluates
to NULL.

isnull(expressionl, expression2)

expression
—isacolumn name, variable, constant expression, or acombination of
any of these that evaluates to asingle value. It can be of any datatype,
including unichar. expression isusually acolumn name. If expressionis
acharacter constant, it must be enclosed in quotes.

CHAPTER 4 Functions: exp — mut_excl_roles

Examples

Usage

Standards
Permissions

See also

select isnull(price,0)
fromtitles

Returnsall rowsfrom thetitles table, replacing null valuesin price with O.

isnull, asystem function, substitutesthe value specified in expression2
when expressionl evaluatesto NULL. For general information about
system functions, see “ String functions” on page 62.

The datatypes of the expressions must convert implicitly, or you must
use the convert function.

SQL92 — Complience level: Transact-SQL extension

Any user can execute isnull.

Function — convert

IS_sec_service _on

Returns 1 if the security serviceis active and O if it is not.

Description
Syntax

Parameters

Examples

Usage

is_sec_service_on(security_service_nm)

security_service_nm

—isthe name of the security service.
sel ect is_sec_service_on("unifiedl ogin")

Useis_sec_service_on to determine whether a given security service
is active during the session.

To find valid names of security services, run this query:
sel ect * from syssecnechs
The result might look something like:

sec_mech_nane avail abl e_service

dce uni fi edl ogin
dce mut ual aut h

dce del egati on

dce integrity

dce confidentiality
dce det ectrepl ay
dce det ect seq

113

Ict_admin

Standards
Permissions

See also

lct_admin

Description

Syntax

Parameters

114

The available_service column displays the security services that are
supported by Adaptive Server.

SQL92 — Complience level: Transact-SQL extension
Any user can execute is_sec_service_on.

Function —show_sec_services

Manages the last-chance threshold.
Returns the current value of the |ast-chance threshold.

Aborts transactions in a transaction log that has reached its last-chance
threshold.

Ict_admin({{"lastchance" | "logfull" }, database_id
|"reserve”, {log_pages | 0}
| "abort", process-id [, database-id]})
lastchance
— creates a last-chance threshold in the specified database.

logfull
—returns 1 if thelast-chance threshold has been crossed in the specified
database and 0 if it has not.

database id
— specifies the database.

reserve
— obtains either the current value of the last-chance threshold or the
number of log pages required for dumping a transaction log of a
specified size.

log_pages
—isthe number of pages for which to determine alast-chance
threshold.

CHAPTER 4 Functions: exp — mut_excl_roles

Examples

—returns the current value of the last-chance threshold. The size of the
last-chance threshold in a database with separate log and data segments
does not vary dynamically. It has afixed value, based on the size of the
transaction log. The last-chance threshold varies dynamically in a
database with mixed log and data segments.

abort
— aborts transactions in a database where the transaction log has
reached itslast-chance threshold. Only transactionsin LOG SUSPEND
mode can be aborted.

process-id
—TheID (spid) of aprocessin log-suspend mode. A processis placed
in log-suspend mode when it has open transactionsin atransaction log
that has reached its last-chance threshold (LCT).

database-id
—the ID of adatabase whose transaction log has reached its LCT. If
process-id is 0, all open transactionsin the specified database are
terminated.

Example 1
sel ect |ct_adnmi n("lastchance", 1)

This creates the log segment | ast-chance threshold for the database with
dbid 1. It returns the number of pages at which the new threshold resides.
If there was a previous last-chance threshold, it is replaced.

Example 2
select lct_admn("logfull", 6)

Returns 1 if the last-chance threshold for the database with db_id of 6 has
been crossed, and O if it has not.

Example 3

select |ct_adm n("reserve", 64)

Calculates and returns the number of log pages that would be required to
successfully dump the transaction log in alog containing 64 pages.

Example 4

select |ct_adnmi n("reserve", 0)

115

Ict_admin

Usage

Standards

Permissions

116

Returns the current last-chance threshold of the transaction log in the
database from which the command was issued.

Example 5
select | ct_adm n("abort", 83)

Aborts transactions bel onging to process 83. The process must be in log-
suspend mode. Only transactions in a transaction log that has reached its
LCT are terminated.

Example 6
select | ct_adm n("abort", 0, 5)
Aborts all open transactions in the database with database ID 5.

This form awakens any processes that may be suspended at the log
segment last-chance threshold.

e Ict_admin, a system function, manages the log segment’s last-chance
threshold. For general information about system functions, see
“String functions” on page 62.

e If Ict_admin(“lastchance”, dbid) returns zero, thelog is not on a
separate segment in this database, so no last-chance threshold exists.

« Whenever you create a database with a separate |og segment, the
server creates a default last chance threshold that defaults to calling
sp_thresholdaction. This happens even if a procedure called
sp_thresholdaction does not exist on the server at all.

If your log crosses the last-chance threshold, Adaptive Server
suspends activity, triesto call sp_thresholdaction, finds it does not
exist, generates an error, then | eaves processes suspended until thelog
can be truncated.

e Toterminate the oldest open transaction in atransaction log that has
reached its LCT, enter the ID of the process that initiated the
transaction.

- Toterminateall open transactionsin atransaction|og that hasreached
its LCT, enter 0 as the process id, and specify adatabase ID in the
database-id parameter.

e For more information, see the System Administration Guide.
SQL92 — Complience level: Transact-SQL extension

Only a System Administrator can execute Ict_admin abort. Any user can
execute the other Ict_admin options.

CHAPTER 4 Functions: exp — mut_excl_roles

See also Command — dump transaction

Function — curunreservedpgs

license_enabled

Description Returns 1if afeature’slicenseisenabled, Oif thelicenseisnot enabled, or
null if you specify an invalid license name.

Syntax license_enabled("ase_server" | "ase_ha" | "ase_dtm" | "ase_java" |
"ase_asm")
Parameters ase_server

— specifies the license for Adaptive Server.

ase_ha
—gpecifiesthe license for the Adaptive Server high availability feature.

ase_dtm
— specifies the license for Adaptive Server distributed transaction
management features.

ase_java
— specifies the license for the Adaptive Server Java feature.

ase_asm
— specifies the license for Adaptive Server advanced security
mechanism.

Examples sel ect |icense_enabl ed("ase_dtni')

Indicates that the license for the Adaptive Server distributed transaction
management feature is enabled.

Usage » For information about installing license keys for Adaptive Server
features, see your Installation Guide.

Standards SQL92 — Complience level: Transact-SQL extension

Permissions Any user can execute license_enabled.

See also System procedure — sp_configure

117

lockscheme

lockscheme

Description

Syntax

Parameters

Examples

Usage

Standards

Permissions

log
Description

Syntax

118

Returns the locking scheme of the specified object as a string.

lockscheme(object_name)
or,
lockscheme(dbid, object_id)

oject_name
—isthe name of the object you are searching. If you do not specify a
fully qualified object name, the current database is searched.

dbid
the ID of the database specified by object_name.

object_id
the ID of the object indicated by object_name

Example 1

sel ect | ockschene(title)
fromtitles

Selects the locking scheme for the title column of the titles table.
Example 2
sel ect | ockschene(4, 224000798)

Selectsthe locking scheme for object_id 224000798 (in this case, thetitles
table) from database ID 4 (the pubs2 database).

* lockscheme() returns varchar(11) and allows NULLs

« |f the specified object is not atable, lockscheme() returns the string
“not atable.”

e For genera information about mathematical functions, see
“Mathematical functions” on page 60.

SQL92 — Complience level: Transact-SQL extension

Any user can execute lockscheme().

Returns the natural logarithm of the specified number.

log(approx_numeric)

CHAPTER 4 Functions: exp — mut_excl_roles

Parameters

Examples

Usage

Standards
Permissions

See also

log10

Description

Syntax

Parameters

Examples

Usage

Standards
Permissions

See also

approx_numeric
—isany approximate numeric (float, real, or double precision) column
name, variable, or constant expression.

sel ect 1 0g(20)

2.995732

¢ log, amathematical function, returnsthe natural logarithm of the
specified value.

e For genera information about mathematical functions, see
“Mathematical functions’ on page 60.

SQL92 — Complience level: Transact-SQL extension
Any user can execute log.

Functions —log10, power

Returns the base 10 logarithm of the specified number.
log10(approx_numeric)

approx_numeric
—isany approximate numeric (float, real, or double precision) column
name, variable, or constant expression.

sel ect 10g10(20)

1. 301030

¢ log10, amathematical function, returns the base 10 logarithm of the
specified value.

e For general information about mathematical functions, see
“Mathematical functions’ on page 60.

SQL92 — Complience level: Transact-SQL extension
Any user can execute log10.

Functions — log, power

119

lower

lower
Description Returns the lowercase equivalent of the specified expression.
Syntax lower(char_exprluchar_expr)
Parameters char_expr
—isacharacter-type column name, variable, or constant expression of
char, varchar, nchar or nvarchar type.
uchar_expr
—isacharacter-type column name, variable, or constant expression of
unichar or univarchar type
Examples select lower(city) from publishers
bost on
washi ngt on
ber kel ey
Usage « lower, astring function, converts uppercase to lowercase, returning a
character value.
e lower istheinverse of upper.
e |If char_expr or uchar_expr isNULL, returns NULL.
» For genera information about string functions, see* String functions’
on page 62.
Standards SQL92 — Complience level: Transact-SQL extension
Permissions Any user can execute lower.
See also Functions — upper
ltrim
Description Returns the specified expression, trimmed of |eading blanks.
Syntax Itrim(char_expr|uchar_expr)
Parameters char_expr

—isacharacter-type column name, variable, or constant expression of
char, varchar, nchar or nvarchar type.

120

CHAPTER 4 Functions: exp — mut_excl_roles

Examples

Usage

Standards
Permissions

See also

max

Description

Syntax

Parameters

Examples

uchar_expr
—is acharacter-type column name, variable, or constant expression of
unichar, Or univarchar type.

select Itrim" 123")

» Itrim, astring function, removes leading blanks from the character
expression. Only values equivalent to the space character in the
current character set are removed.

» If char_expr or uchar_expr isNULL, returns NULL.

» For Unicode expressions, returns the lower-case Unicode equivalent
of the specified expression. Charactersin the expression that have no
lower-case equivalent are left unmodified.

» For general information about string functions, see“ String functions’
on page 62.

SQL92 — Complience level: Transact-SQL extension
Any user can execute Itrim.

Functions — rtrim

Returns the highest value in an expression.
max(expression)

expression
—isacolumn name, constant, function, any combination of column
names, constants, and functions connected by arithmetic or bitwise
operators, or a subguery.

Example 1

sel ect max(di scount) from sal esdetail

62. 200000

Returns the maximum value in the discount column of the salesdetail table
as anew column.

121

min

Usage

Standards
Permissions

See also

min
Description

Syntax

122

Example 2

sel ect discount from sal esdetail
conput e max(di scount)

Returns the maximum value in the discount column of the salesdetail table
asanew row.

max, an aggregate function, finds the maximum value in a column or
expression. For general information about aggregate functions, see
“Aggregate functions” on page 45.

max can be used with exact and approximate numeric, character, and
datetime columns. It cannot be used with bit columns. With character
columns, max finds the highest value in the collating sequence. max
ignores null values. max implicitly convertschar datatypesto varchar,
unichar datatypes to univarchar, stripping al trailing blanks.

unichar datais collated according to the default Unicode sort order.

Adaptive Server goes directly to the end of the index to find the last
row for max when there isan index on the aggregated column, unless:

e Theexpression not acolumn
e Thecolumnisnot the first column of an index
e Thereisanother aggregate in the query

e Thereisagroup by or where clause

SQL92 — Complience level: Transact-SQL extension

Any user can execute max.

Commands —compute Clause, group by and having Clauses, select, where
Clause

Functions — avg, min

Returns the lowest value in a column.

min(expression)

CHAPTER 4 Functions: exp — mut_excl_roles

Parameters

Examples

Usage

Standards
Permissions

See also

expression
—isacolumn name, constant, function, any combination of column
names, constants, and functions connected by arithmetic or bitwise
operators, or a subquery. With aggregates, an expression is usually a
column name. For more information, see “Expressions’ on page 179.

select mn(price) fromtitles
where type = "psychol ogy"

* min, an aggregate function, finds the minimum value in a column.

» For general information about aggregate functions, see “ Aggregate
functions” on page 45.

* min can be used with numeric, character, and datetime columns. It
cannot be used with bit columns. With character columns, min finds
the lowest value in the sort sequence. min implicitly converts char
datatypes to varchar, unichar datatypes to univarchar, stripping all
trailing blanks. min ignores null values. distinct is not available, since
it is not meaningful with min.

* unichar datais collated according to the default Unicode sort order.

» Adaptive Server goesdirectly to thefirst qualifying row for min when
thereis an index on the aggregated column, unless:

* Theexpression isnot acolumn
» Thecolumnis not the first column of an index
» Thereisanother aggregate in the query
» Thereisagroup by clause
SQL92 — Complience level: Transact-SQL extension
Any user can execute min.

Commands —compute Clause, group by and having Clauses, select, where
Clause

Functions — avg, max

123

mut_excl_roles

mut_excl_roles

Description

Syntax

Parameters

Examples

Usage

Standards
Permissions

See also

124

Returns information about the mutual exclusivity between two roles.
mut_excl_roles (rolel, role2 [membership | activation])

rolel
—is one user-defined role in amutually exclusive relationship.

role2
—isthe other user-defined role in a mutually exclusive relationship.

level
—isthelevel (membership or activation) at which the specified roles
are exclusive,

alter role adm n add excl usi ve nenber shi p supervi sor
sel ect
mut _excl _rol es("adm n", "supervisor", "nmenbership")

Shows that the admin and supervisor roles are mutually exclusive.

e mut_excl_roles, asystem function, returns information about the
mutual exclusivity between two roles. If the System Security Officer
definesrolel as mutually exclusive with role2 or arole directly
contained by role2, mut_excl_roles returns 1. If the roles are not
mutually exclusive, mut_excl_roles returns 0.

e For general information about system functions, see “ System
functions’ on page 64.

SQL92 — Complience level: Transact-SQL extension

Any user can execute mut_excl_roles.

Commands — alter role, create role, drop role, grant, set, revoke
Functions —proc_role, role_contain, role_id, role_name

System procedures — sp_activeroles, sp_displayroles, sp_role

CHAPTER 5

object_id
Description
Syntax

Parameters

Examples

Usage

Standards
Permissions

See also

Functions: object_id — rtrim

Returns the object 1D of the specified object.
object_id(object_name)

object_name
—isthe name of a database object, such as atable, view, procedure,
trigger, default, or rule. The name can be fully qualified (that is, it can
include the database and owner name). Enclose the object_namein
quotes.

Example 1

sel ect object_id("titles")

208003772
Example 2

sel ect object_id("master..sysobjects")

e object_id, asystem function, returnsthe object’s ID. Object IDs are
stored in theid column of sysobjects.

» For general information about system functions, see “ System
functions’ on page 64.

SQL92 — Complience level: Transact-SQL extension
Any user can execute object_id.
Functions — col_name, db_id, object_name

System procedure — sp_help

125

object_name

object_name

Description

Syntax

Parameters

Examples

Usage

Standards
Permissions

See also

patindex

Description

Syntax

126

Returns the name of the object whose object ID is specified.
object_name(object_id[, database_id])

object_id
—istheobject ID of adatabase object, such asatable, view, procedure,
trigger, default, or rule. Object IDs are stored in theid column of
sysobjects.

database id
—isthe ID for adatabase if the object is not in the current database.
Database IDs* are stored in the db_id column of sysdatabases.

Example 1

sel ect obj ect _nane(208003772)

Example 2

sel ect object_nanme(1, 1)

sysobj ects
e object_name, a system function, returns the object’s name.

» For general information about system functions, see “ System
functions” on page 64.

SQL92 — Complience level: Transact-SQL extension
Any user can execute object_name.
Functions — col_name, db_id, object_id

System procedures — sp_help

Returns the starting position of the first occurrence of a specified pattern.

patindex("%pattern%", char_exprjuchar_expr [, using
{bytes | characters | chars}])

CHAPTER 5 Functions: object_id — rtrim

Parameters pattern
—isacharacter expression of the char or varchar datatype that may
include any of the pattern-match wildcard characters supported by
Adaptive Server. The % wildcard character must precede and follow
pattern (except when searching for first or last characters). For a
description of the wildcard characters that can be used in pattern, see
“Pattern matching with wildcard characters’ on page 195.

char_expr
—isacharacter-type column name, variable, or constant expression of
char, varchar, nchar or nvarchar type.

uchar_expr
—isacharacter-type column name, variable, or constant expression of
unichar, Or univarchar type.

using
— specifies aformat for the starting position.

bytes
— returns the offset in bytes.

chars
or characters — returns the offset in characters (the default).

Examples Example 1

sel ect au_id, patindex("%ircus%, copy)
from bl urbs

au_id
486-29-1786 0
648-92-1872 0
998- 72- 3567 38
899- 46- 2035 31
672-71-3249 0
409- 56- 7008 0

Selects the author ID and the starting character position of the word
“circus’ in the copy column.

Example 2

select au_id, patindex("%ircus%, copy,
usi ng chars)
from bl urbs

127

patindex

Example 3

sel ect au_id, patindex("%ircus%, copy,
usi ng chars)
from bl urbs

The same as example 1.
Example 4

sel ect nane
from sysobj ects
wher e patindex("sys[a-d]%, nane) > 0

sysal ter nat es
sysattri butes
syscharsets
syscol ums
syscomment s
sysconfi gures
sysconstraints
syscurconfigs
sysdat abases
sysdepends
sysdevi ces

Finds all the rows in sysobjects that start with “sys’ and whose fourth
characteris“a’, “b”, “c”, or “d".
Usage e patindex, astring function, returns an integer representing the starting

position of the first occurrence of pattern in the specified character
expression, or azero if pattern is not found.

e patindex can be used on all character data, including text and image
data.

e By default, patindex returnsthe offset in characters; to return the offset
in bytes (multibyte character strings), specify using bytes.

* Include percent signs before and after pattern. To look for pattern as
the first characters in a column, omit the preceding %. To look for
pattern asthe last charactersin a column, omit the trailing %.

e |If char_expr or uchar_expr isNULL, returnsO.

e |f avarchar expression is given as one parameter and a unichar
expression is given as the other, the varchar expression isimplicitly
converted to unichar (with possible truncation).

128

CHAPTER 5 Functions: object_id — rtrim

Standards
Permissions

See also

pagesize
Description

Syntax

Parameters

Examples

Usage

¢ For general information about string functions, see“ String functions”
on page 62.

SQL92 — Complience level: Transact-SQL extension
Any user can execute patindex.

Functions — charindex, substring

Returns the page size, in bytes, for the specified object.

pagesize(object_name [, index_name)
or,
pagesize(dbid, object_id [, index_id])

object_name
- the name of the object you are searching. If you do not specify afully
qualified object name, the current database is searched.

index_name
—indicates the name of the index used for the search

dbid
—the ID of the database specified by object_name.

object_id
—the ID of the object indicated by object_name.

index_id
- the ID of the index indicated by index_name.

Example 1

sel ect pagesize(title, title_id)
fromtitles

Selects the pagesize for the title column of the titles table.
Example 2
sel ect pagesize(4,)

Selects the pagesize for the titles table (object_id 224000798) from the
pubs2 database (dbid 4).

e If youdo not indicate an index_name, the default isto use the data
level of the table.

129

pi

Standards

Permissions

Pl
Description

Syntax

Parameters

Examples

Usage

Standards
Permissions

See also

power

Description

Syntax

Parameters

130

« |f the specified object is not a page size (for example, if the name of
aview is provided), pagesize() returns zero.

e |f the specified object does not exist, pagesize() returns NULL.
SQL92 — Complience level: Transact-SQL extension

Any user can execute pagesize().

Returns the constant value 3.1415926535897936.
pi()

None

sel ect pi()

3.141593

e pi, amathematical function, returns the constant value of
3.1415926535897931.

e For genera information about mathematical functions, see
“Mathematical functions” on page 60.

SQL92 — Complience level: Transact-SQL extension
Any user can execute pi.

Functions — degrees, radians

Returnsthe value that results from raising the specified number to agiven
power.

power(value, power)

value
—isanumeric value.

CHAPTER 5 Functions: object_id — rtrim

Examples

Usage

Standards
Permissions

See also

proc_role

Description

Syntax

Parameters

Examples

power
—isan exact numeric, approximate numeric, or money value.

sel ect power(2, 3)

* power, amathematical function, returns the value of value raised to
the power power. Results are of the same type as value.

For expressionsof typenumeric or decimal, theresultshaveaninternal
precision of 77 and a scale equal to that of the expression.

» For general information about mathematical functions, see
“Mathematical functions’ on page 60.

SQL92 — Complience level: Transact-SQL extension
Any user can execute power.

Functions — exp, log, log

Returnsinformation about whether the user has been granted the specified
role.

proc_role ("role_name")

role_name
—isthe name of a system or user-defined role.

Example 1

create procedure sa_check as
if (proc_role("sa_role") > 0)
begin
return(l)
end
print "You are a System Administrator."

Creates a procedure to check if the user is a System Administrator.
Example 2
sel ect proc_role("sso_role")

Checks that the user has been granted the System Security Officer role.

131

ptn_data_pgs

Usage

Standards
Permissions

See also

ptn_data_pgs

Description

Syntax

Parameters

132

Example 3
sel ect proc_rol e("oper_role")
Checks that the user has been granted the Operator role.

e proc_role, a system function, checks whether an invoking user has
been granted, and has activated, the specified role.

e proc_role returns O if any of the following are true:
« theuser has not been granted the specified role

« theuser has not been granted arole which contains the specified
role

« theuser has been granted, but has not activated, the specified role

e proc_role returns 1 if the invoking user has been granted, and has
activated, the specified role.

e proc_role returns 2 if the invoking user has a currently active role,
which contains the specified role.

« For general information about system functions, see “ System
functions” on page 64.

SQL92 — Complience level: Transact-SQL extension
Any user can execute proc_role.
Commands — alter role, create role, drop role, grant, set, revoke

Functions — mut_excl_roles, role_contain, role_id, role_name, show_role

Returns the number of data pages used by a partition.
ptn_data_pgs(object_id, partition_id)
object_id
—isthe object ID for atable, stored in theid column of sysobjects,
sysindexes, and syspartitions.
partition_id
—isthe partition number of atable.

CHAPTER 5 Functions: object_id — rtrim

Examples

Usage

Standards
Permissions

See also

radians

Description

Syntax

Parameters

Examples

Usage

sel ect ptn_data_pgs(object_id("sal esdetail"), 1)

ptn_data_pgs, a system function, returns the number of data pagesin
apartitioned table.

Usetheobject_id function to get an object’s 1D, and use sp_helpartiton
to list the partitions in atable.

The data pages returned by ptn_data_pgs may be inaccurate. Use the
update partition statistics, dbcc checktable, dbcc checkdb, or dbcc
checkalloc commands before using ptn_data_pgs to get the most
accurate value.

For general information about system functions, see “ System
functions’ on page 64.

SQL92 — Complience level: Transact-SQL extension
Only the table owner can execute ptn_data_pgs.
Commands — update partition statistics, dbcc
Functions — data_pgs, object_id

System procedures — sp_helpartition

Returnsthe size, in radians, of an angle with the specified number of
degrees.

radians(numeric)

numeric

—isany exact numeric (numeric, dec, decimal, tinyint, smallint, Or int),
approximate numeric (float, real, or double precision), or money column,
variable, constant expression, or acombination of these.

sel ect radi ans(2578)

radians, amathematical function, converts degreesto radians. Results
are of the same type as numeric.

133

rand

Standards
Permissions

See also

rand

Description

Syntax

Parameters

Examples

Usage

134

For expressions of type numeric or decimal, the results have an
internal precision of 77 and a scale equal to that of the numeric
expression.

When money datatypes are used, internal conversion to float may
cause loss of precision.

» For genera information about mathematical functions, see
“Mathematical functions” on page 60.

SQL92 — Complience level: Transact-SQL extension
Any user can execute radians.

Function —degrees

Returns arandom value between 0 and 1, which is generated using the
specified seed value.
rand([integer])
integer
—isany integer (tinyint, smallint or int) column name, variable, constant
expression, or acombination of these.
Example 1

sel ect rand()

0. 395740
Example 2

decl are @eed int
sel ect @eed=100
sel ect rand(@eed)

0. 000783

* rand, amathematical function, returns arandom float value between
0 and 1, using the optional integer as a seed value.

CHAPTER 5 Functions: object_id — rtrim

Standards
Permissions

See also

replicate

Description

Syntax

Parameters

Examples

¢ Therand function uses the output of a 32-bit pseudo-random integer
generator. The integer is divided by the maximum 32-bit integer to
give adouble value between 0.0 and 1.0. Therand function is seeded
randomly at server start-up, so getting the same sequence of random
numbersisunlikely, unless the user first initializes this function with
aconstant seed value. Therand functionisaglobal resource. Multiple
users calling the rand function progress along a single stream of
pseudo-random values. If arepeatable series of random numbersis
needed, the user must assure that the function is seeded with the same
value initially and that no other user calls rand while the repeatable
sequence is desired.

e For genera information about mathematical functions, see
“Mathematical functions’ on page 60.

SQL92 — Complience level: Transact-SQL extension
Any user can execute rand.

Datatypes — Approximate numeric datatypes

Returns a string consisting of the specified expression repeated a given
number of times.
replicate (char_expr|uchar_expr, integer_expr)

char_expr
—isacharacter-type column name, variable, or constant expression of
char, varchar, nchar or nvarchar type.

uchar_expr
—isacharacter-type column name, variable, or constant expression of
unichar or univarchar type.

integer_expr
—isany integer (tinyint, smallint, or int) column name, variable, or
constant expression.

sel ect replicate("abcd", 3)

abcdabcdabcd

135

reserved_pgs

Usage

Standards
Permissions

See also

reserved _pgs

Description

Syntax

Parameters

Examples

Usage

136

« replicate, astring function, returns a string with the same datatype as
char_expr, or uchar_expr containing the same expression repeated
the specified number of times or as many times aswill fit into a 64K -
space, whichever isless.

e |f char_expr or uchar_expr isNULL, returnsasingle NULL.

« For genera information about string functions, see“ String functions”
on page 62.

SQL92 — Complience level: Transact-SQL extension
Any user can execute replicate.

Functions — stuff

Returns the number of pages allocated to the specified table or index, and
reports pages used for internal structures.

reserved_pgs(object_id, {doampg|ioampg})

object_id
—isanumeric expression that isan object ID for atable, view, or other
database object. These are stored in theid column of sysobjects.

doampg | ioampg
— specifies table (doampg) or index (ioampg).

sel ect reserved_pgs(id, doanpg)
from sysi ndexes where id =
obj ect _id("sysl ogs")

Returns the page count for the syslogs table.

e reserved_pgs, asystem function:
e Returns the number of pages allocated to atable or an index
» Reports pages used for internal structures
e Works only on objects in the current database

« For genera information about system functions, see “ System
functions” on page 64.

CHAPTER 5 Functions: object_id — rtrim

Standards
Permissions

See also

reverse

Description

Syntax

Parameters

Examples

Usage

Standards
Permissions

See also

SQL92 — Complience level: Transact-SQL extension
Any user can execute reserved_pgs.
Commands — update statistics

Functions — data_pgs

Returns the specified string with characterslisted in reverse order.

reverse(expressionjuchar_expr)

expression
—isacharacter or binary-type column name, variable, or constant
eXpr on of char, varchar, nchar, nvarchar, binary, or varbinary type.

uchar_expr
—isacharacter or binary-type column name, variable, or constant
expression of unichar or univarchar type.

Example 1

sel ect reverse("abcd")

dcha
Example 2

sel ect reverse(0x12345000)

0x00503412
e reverse, astring function, returns the reverse of expression.
e If expressionisNULL, returns NULL.
e Surrogate pairs are treated as indivisible and are not reversed.

¢ For general information about string functions, see“ String functions”
on page 62.

SQL92 — Complience level: Transact-SQL extension
Any user can execute reverse.

Functions — lower, upper

137

right

right

Description

Syntax

Parameters

Examples

138

The rightmost part of the expression with the specified number of
characters.

right(expression, integer_expr)

expression
—isacharacter or binary-type column name, variable, or constant
expression of char, varchar, nchar, unichar, nvarchar, univarchar, binary,
or varbinary type.

integer_expr
—isany integer (tinyint, smallint, or int) column name, variable, or
constant expression.

Example 1

sel ect right("abcde", 3)

cde
Example 2

sel ect right("abcde", 2)

de
Example 3

sel ect right("abcde", 6)

Example 4
sel ect right(0x12345000, 3)

0x345000
Example 5

sel ect right(0x12345000, 2)

0x5000

CHAPTER 5 Functions: object_id — rtrim

Usage

Standards
Permissions

See also

role_contain

Description
Syntax

Parameters

Examples

Example 6

sel ect right(0x12345000, 6)

0x12345000

* right, astring function, returns the specified number of characters
from the rightmost part of the character or binary expression.

» |f the specified rightmost part begins with the second surrogate of a
pair (the low surrogate), the return value starts with the next full
character. Therefore, one less character is returned.

» Thereturn value has the same datatype as the character or binary
expression.

» If expressionisNULL, returns NULL.

» For general information about string functions, see“ String functions’
on page 62.

SQL92 — Complience level: Transact-SQL extension
Any user can executeright.

Functions — rtrim, substring

Returns 1 if role2 containsrolel.

role_contain("rolel", "role2")

rOIElis the name of a system or user-defined role.
role2
—isthe name of another system or user-defined role.
Example 1
select role_contain("intern_role", "doctor_role")
1

139

role_id

Usage

Standards
Permissions

See also

role_id
Description

Syntax

Parameters

Examples

140

Example 2

sel ect role_contain("specialist_role",
"intern_role")

e role_contain, a system function, returns 1 if rolel is contained by
role2.

* For more information about contained roles and role hierarchies, see
the System Administration Guide.

* For moreinformation about system functions, see* System functions’
on page 64

SQL92 — Complience level: Transact-SQL extension
Any user can execute role_contain.

Functions — mut_excl_roles, proc_role, role_id, role_name
Commands — alter role

System procedures — sp_activeroles, sp_displayroles, sp_role

Returns the system role ID of the role whose name you specify.
role_id("role_name")

role_name
—isthe name of asystem or user-defined role. Role namesand role IDs
are stored in the syssrvroles system table.

Example 1

select role_id("sa_role")

Returns the system role ID of sa_role.
Example 2

select role_id("intern_role")

CHAPTER 5 Functions: object_id — rtrim

Usage

Standards
Permissions

See also

role_name

Description

Syntax

Parameters

Examples

Usage

Standards
Permissions

See also

Returns the system role ID of the “intern_role”.

* role_id, asystem function, returns the system role ID (srid). System
role IDs are stored in the srid column of the syssrvroles system table.

» If therole_nameisnot avalid role in the system, Adaptive Server
returns NULL.

» For more information about roles, see the System Administration
Guide.

» For moreinformation about system functions, see* System functions’
on page 64.

SQL92 — Complience level: Transact-SQL extension
Any user can execute role_id.

Functions — mut_excl_roles, proc_role, role_contain, role_name

Returns the name of arole whose system role ID you specify.
role_name(role_id)

role id
—isthe system role ID (srid) of the role. Role names are stored in
syssrvroles.

sel ect rol e_nanme(01)

¢ role_name, asystem function, returns the role name.

¢ Formoreinformation about system functions, see” System functions”
on page 64.

SQL92 — Complience level: Transact-SQL extension
Any user can execute role_name.

Functions — mut_excl_roles, proc_role, role_contain, role_id

141

round

round

Description

Syntax

Parameters

Examples

Usage

142

Returns the value of the specified number, rounded to a given number of
decimal places.

round(number, decimal_places)

number —
isany exact numeric (numeric, dec, decimal, tinyint, smallint, or int),
approximate numeric (float, real, or double precision), or money column,
variable, constant expression, or a combination of these.

decimal_places
—isthe number of decimal placesto round to.

Example 1

sel ect round(123. 4545, 2)

123. 4500
Example 2

sel ect round(123.45, -2)

Example 3

sel ect round(1.2345E2, 2)

123. 450000
Example 4

sel ect round(1l.2345E2, -2)

100. 000000

* round, amathematical function, rounds the number so that it has
decimal_places significant digits.

e A positivedecimal_placesdeterminesthe number of significant digits
to the right of the decimal point; anegative decimal_places, the
number of significant digits to the left of the decimal point.

* Resultsare of the same type as number and, for numeric and decimal
expressions, have an internal precision equal to the precision of the
first argument plus 1 and a scale equal to that of number.

CHAPTER 5 Functions: object_id — rtrim

Standards
Permissions

See also

rowcnt

Description

Syntax

Parameters

Examples

Usage

¢ round always returns avalue. If decimal_placesis negative and
exceeds the number of significant digitsin number, Adaptive Server
returns aresult of 0. (Thisis expressed in the form 0.00, where the
number of zerosto the right of the decimal point is equal to the scale
of numeric.) For example:

sel ect round(55.55, -3)
returns a value of 0.00.

» For general information about mathematical functions, see
“Mathematical functions’ on page 60.

SQL92 — Complience level: Transact-SQL extension
Any user can execute round.

Functions — abs, ceiling, floor, sign, str

Returns an estimate of the number of rowsin the specified table.

rowcnt(sysindexes.doampg)

sysindexes.doampg
—istherow count maintained in sysindexes.

sel ect nanme, rowcnt (sysindexes. doanpg)
from sysi ndexes
where name in
(sel ect nane from sysobjects
where type = "U")

nane
roysched 87
sal esdet ai | 116
stores 7
di scount s 4
au_pi x 0
bl ur bs 6

* rowcnt, asystem function, returns the estimated number of rowsin a
table.

143

rtrim

Standards
Permissions

See also

rtrim

Description

Syntax

Parameters

Examples

Usage

144

e Thevalue returned by rowcnt can vary unexpectedly when Adaptive
Server reboots and recovers transactions. The value is most accurate
after running one of the following commands:

¢ dbcc checkalloc

¢ dbcc checkdb

¢ dbcc checktable

* update all statistics
* update statistics

e For general information about system functions, see “ System
functions” on page 64.

SQL92 — Complience level: Transact-SQL extension
Any user can execute rowcnt.

Catalog stored procedures —sp_statistics
Commands — dbcc, update all statistics, update statistics
Function —data_pgs

System procedures — sp_helpartition, sp_spaceused

Returns the specified expression, trimmed of trailing blanks.
rtrim(char_expr|uchar_expr)

char_expr
—isacharacter-type column name, variable, or constant expression of
char, varchar, nchar or nvarchar type.

uchar_expr
—is a character-type column name, variable, or constant expression of
unichar, or univarchar type.

select rtrim"abcd ")

e rtrim, astring function, removestrailing blanks.

CHAPTER 5 Functions: object_id — rtrim

Standards
Permissions

See also

¢ For Unicode, ablank is defined as the Unicode value U+0020.
e |If char_expr or uchar_expr isNULL, returns NULL.

¢ Only values equivalent to the space character in the current character
set are removed.

¢ For general information about string functions, see“ String functions’
on page 62.

SQL92 — Complience level: Transact-SQL extension
Any user can execute rtrim.

Functions — Itrim

145

rtrim

146

CHAPTER 6

show role

Description

Syntax

Parameters

Examples

Usage

Standards
Permissions

See also

Functions: show_role —
valid _user

Shows the login’s currently active system-defined roles.

show_role()
None.

Example 1

sel ect show_rol e()

sa_role sso_role oper_role replication_role
Example 2

if charindex("sa_role", showrole()) >0
begin

print "You have sa_role"
end

« show_role, asystem function, returnsthe login’s current active
system-defined roles, if any (sa_role, sso_role, oper_role, or
replication_role). If the login has no roles, show_role returns NULL.

¢ When aDatabase Owner invokes show_role after using setuser,
show_role displays the active roles of the Database Owner, not the
user impersonated with setuser.

e For general information about system functions, see “ System
functions’ on page 64.

SQL92 — Complience level: Transact-SQL extension

Any user can execute show_role.

Commands — alter role, create role, drop role, grant, set, revoke
Functions — proc_role, role_contain

System procedures — sp_activeroles, sp_displayroles, sp_role

147

show_sec_services

show_sec_services

Description

Syntax

Parameters

Examples

Usage

Standards
Permissions

See also

sign

Description

Syntax

Parameters

Examples

148

Lists the security services that are active for the session.

show_sec_services()
None.

sel ect show_sec_services()
encryption, replay_detection

Shows that the user’s current session is encrypting data and performing
replay detection checks.

» Useshow_sec_services to list the security servicesthat are active
during the session.

« If no security services are active, show_sec_services returns NULL.
SQL92 — Complience level: Transact-SQL extension
Any user can execute show_sec_services.

Functions—is_sec_service_on

Returns the sign (+1 for positive, O, or -1 for negative) of the specified
value,

sign(numeric)

numeric
—isany exact numeric (numeric, dec, decimal, tinyint, smallint, Or int),
approximate numeric (float, real, or double precision), or money column,
variable, constant expression, or a combination of these.

Example 1

sel ect sign(-123)

Example 2

sel ect sign(0)

CHAPTER 6 Functions: show_role — valid_user

Usage

Standards
Permissions

See also

sin
Description

Syntax

Parameters

Examples

Usage

Standards

Permissions

Example 3

sel ect sign(123)

e sign, amathematical function, returns the positive (+1), zero (0), or
negative (-1).

¢ Resultsare of the same type, and have the same precision and scale,
as the numeric expression.

e For genera information about mathematical functions, see
“Mathematical functions’ on page 60.

SQL92 — Complience level: Transact-SQL extension
Any user can execute sign.

Functions — abs, ceiling, floor, round

Returns the sine of the specified angle (in radians).
sin(approx_numeric)

approx_numeric
—isany approximate numeric (float, real, or double precision) column
name, variable, or constant expression.

sel ect sin(45)

0. 850904

» sin, amathematical function, returns the sine of the specified angle
(measured in radians).

» For general information about mathematical functions, see
“Mathematical functions’ on page 60.

SQL92 — Complience level: Transact-SQL extension

Any user can execute sin.

149

sortkey

See also Functions — cos, degrees, radians
sortkey
Description Generates values that can be used to order results based on collation

behavior, which allows you to work with character collation behaviors
beyond the default set of Latin-character-based dictionary sort orders and
case or accent sensitivity.

Syntax sortkey (char_expression|uchar_expression) [, {collation_name |
collation_ID}])

Parameters char_expression
—is a character-type column name, variable, or constant expression of
char, varchar, nchar or nvarchar type.

uchar_expression
—isacharacter-type column name, variable, or constant expression of
unichar or univarchar type.

collation_name
—isaquoted string or acharacter variable that specifiesthe collation to
use. Table 6-1 shows the valid values.

collation_ID
isan integer constant or a variable that specifies the collation to use.
Table 6-1 shows the valid values.

Examples Example 1

select * fromcust_table where cust_nane like “TI% order by
(sortkey(cust_nane, “dict”)

Shows sorting by European language dicitionary order.
Example 2

sel ect *from cust_table where cust nanme like “TI% order by (sortkey(cust-
name, “gbpinyin”)

Shows sorting by simplified Chinese phonetic order.
Example 3

Shows sorting by European language dictionary order using the in-line
option.

sel ect *fromcust_table where cust_nane |ike”TI% order by cust_french_sort

150

CHAPTER 6 Functions: show_role — valid_user

Example 4

select * fromcust_table where cust_nane like “TI% order by

cust _chi nese_sort.

Usage

Shows sorting by Simplified Chinese phonetic order using pre-existing
keys.

sortkey, a system function, generates values that can be used to order
results based on collation behavior. This allows you to work with
character collation behaviors beyond the default set of Latin-
character-based dictionary sort orders and case or accent sensitivity.
Thereturn value is avarbinary datatype value that contains coded
collation information for the input string that is returned from the
sortkey function.

For example, you can storethe values returned by sortkey inacolumn
with the source character string. When you want to retrieve the
character datain the desired order, the select statement only needsto
include an order by clause on the columns that contain the results of
running sortkey.

sortkey guaranteesthat the valuesit returnsfor agiven set of collation
criteriawork for the binary comparisons that are performed on
varbinary datatypes.

Note sortkey can generate up to 6 bytes of collation information for
each input character. Therefore, the result from using sortkey may
exceed the 255-byte length limit of the varbinary datatype. If this
happens, theresult istruncated to fit. Truncation removesresult bytes
for each input character until the result string islessthan 255 bytes. If
this occurs, awarning message isissued, but the query or transaction
that contained the sortkey function continues to work.

char_expression or uchar_expression must be composed of
characters that are encoded in the server’s default character set.

char_expression or uchar_expression can be an empty string. If itis
an empty string:

* sortkey returns a zero-length varbinary value, and
» storesablank for the empty string.

An empty string has a different collation value than an NULL string
from a database column.

151

sortkey

152

If char_expression or uchar_expression is NULL, sortkey returns a
NULL value.

If aunicode expression has no specified sort order, the unicode default
sort order is used.

If you do not specify avalue for collation_name or collation_ID,
sortkey assumes binary collation.

Collation Tables

Therearetwo typesof collation tablesyou can useto perform multilingual
sorting:

1

A “built-in" collation table created by the sortkey function. This
function existsin all ASE releases after ASE 11.5.1. You can use
either the collation name or the collation ID to specify abuilt-in table.

An external collation table that uses the Unilib library sorting
functions. You must use the collation name to specify an external
table. These*srt files are located at $SY BASE/collate/unicode.

Both of these methods work equally well, but a“built-in” tableistied
to a Sybase A SE database, an external tableisnot. If you usean ASE
database, abuilt-in table provides the best performance. both of these
methods can handle any mix of English, European, and Asian
languages.

There are two ways of using sortkey:

1

In-line: This uses sortkey as part of the order by clause and is useful
for retrofitting an existing application and minimizing the changes.
Note however, that this method generates sort keys on-the-fly, and
therefore does not provide optimum performance on large datasets of
over 1000 records.

Pre-existing keys: this method calls sortkey whenever a new record
requiring multilingual sorting is added to the table, such as anew
customer name. Shadow columns (binary or varbinary type) must be
set up in the database, preferably in the same table, one for each
desired sort order (e.g. French, Chinese, etc.). When aquery requires
output to be sorted, the order by clause uses one of the shadow
columns. This method produces the best performance since keys are
already generated and stored, and are quickly compared only on the
basis of their binary values.

CHAPTER 6 Functions: show_role — valid_user

You can view alist of available collation rules. Print out the list by
executing either the stored procedure sp_helpsort, or by querying and

selecting the name, id, and description from syscharsets, (type is between

2003 and 2999.)

e Table6-1liststhevalid values for collation_name and collation_ID.

Table 6-1: Collation names and IDs

Description Collation name Collation ID
Binary sort binary 50
Default Unicode multilingual default 0
CP 850 Alternative no accent altnoacc 39
CP 850 Alternative lower casefirst atdict 45
CP 850 Alternative no case preference altnocsp 46
CP 850 Scandinavian dictionary scandict 47
CP 850 Scandinavian no case preference scannocp 48
GB Pinyin gbpinyin n/a
Latin-1 English, French, German dictionary dict 51
Latin-1 English, French, German no case nocase 52
Latin-1 English, French, German no case preference nocasep 53
Latin-1 English, French, German no accent noaccent 54
Latin-1 Spanish dictionary espdict 55
Latin-1 Spanish no case espnocs 56
Latin-1 Spanish no accent espnoac 57
1SO 8859-5 Cyrillic dictionary cyrdict 63
1SO 8859-5 Russian dictionary rusdict 58
1SO 8859-9 Turkish dictionary turdict 72
Shift-JIS binary order gishin 259
Thal dictionary thaidict 1

Standards SQL92 — Complience level: Transact-SQL extension

Permissions Any user can execute sortkey.

See also Functions — compare

153

soundex

soundex

Description

Syntax

Parameters

Examples

Usage

Standards
Permissions

See also

space
Description

Syntax

Parameters

154

Returns a 4-character code representing the way an expression sounds.
soundex(char_expr|uchar_expr)

char_expr
—isacharacter-type column name, variable, or constant expression of
char, varchar, nchar or nvarchar type.

uchar_expr
—is a character-type column name, variable, or constant expression of
unichar or univarchar type.

sel ect soundex ("smth"), soundex ("smythe")

S530 S530

* soundex, astring function, returns a 4-character soundex code for
character strings that are composed of a contiguous sequence of valid
single- or double-byte roman letters.

» Thesoundex function converts an alphastring to afour-digit code for
usein locating similar-sounding words or names. All vowels are
ignored unless they constitute the first letter of the string.

e If char_expr or uchar_expr isNULL, returns NULL.

» For general information about string functions, see” String functions’
on page 62.

SQL92 — Complience level: Transact-SQL extension
Any user can execute soundex.
Functions — difference

Returns a string consisting of the specified number of single-byte spaces.
space(integer_expr)

integer_expr
—isany integer (tinyint, smallint, or int) column name, variable, or
constant expression.

CHAPTER 6 Functions: show_role — valid_user

Examples

Usage

Standards
Permissions

See also

sqrt
Description

Syntax
Parameters
Examples

Usage

Standards
Permissions

See also

sel ect "aaa", space(4), "bbb"

aaa bbb

* space, astring function, returns a string with the indicated number of
single-byte spaces.

» For general information about string functions, see“ String functions’
on page 62.

SQL92 — Complience level: Transact-SQL extension
Any user can execute space.

Functions —isnull, rtrim

Returns the square root of the specified number.
sqrt(approx_numeric)

approx_numeric
—isany approximate numeric (float, real, or double precision) column
name, variable, or constant expression that evaluates to a positive
number.

sel ect sqrt(4)
2.000000

e sgrt, amathematical function, returns the square root of the specified
value.

e Ifyou attempt to select the square root of anegative number, Adaptive
Server returns the following error message:

Domai n error occurred.

e For genera information about mathematical functions, see
“Mathematical functions’ on page 60.

SQL92 — Complience level: Transact-SQL extension
Any user can execute sqrt.

Functions — power

155

str

Str

Description
Syntax

Parameters

Examples

Usage

156

Returns the character equivalent of the specified number.
str(approx_numeric [, length [, decimal]])

approx_numeric
—isany approximate numeric (float, real, or double precision) column
name, variable, or constant expression.

length
— sets the number of characters to be returned (including the decimal
point, all digitsto the right and |eft of the decimal point, and blanks).
The default is 10.

decimal
— sets the number of decimal digits to be returned. The default is 0.

Example 1

sel ect str(1234.7, 4)

1235
Example 2

sel ect str(-12345, 6)

Example 3

sel ect str(123.45, 5, 2)

e str, astring function, returns a character representation of the floating

point number. For general information about string functions, see
“String functions” on page 62.

« length and decimal are optional. If given, they must be nonnegative.

str rounds the decimal portion of the number so that the results fit
within the specified length. The length should be long enough to
accommodate the decimal point and, if negative, the number’s sign.
The decimal portion of the result isrounded to fit within the specified
length. If the integer portion of the number does not fit within the
length, however, str returns arow of asterisks of the specified length.
For example:

CHAPTER 6 Functions: show_role — valid_user

Standards
Permissions

See also

stuff

Description

Syntax

Parameters

sel ect str(123.456, 2, 4)

* %

A short approx_numeric isright justified in the specified length, and
along approx_numeric is truncated to the specified number of
decimal places.

e If approx_numericisNULL, returns NULL.
SQL92 — Complience level: Transact-SQL extension
Any user can execute str.

Functions — abs, ceiling, floor, round, sign

Returns the string formed by deleting a specified number of characters
from one string and replacing them with another string.

stuff(char_exprljuchar_exprl, start, length, char_expr2|uchar_expr2)
char_exprl
—isacharacter-type column name, variable, or constant expression of
char, varchar, nchar or nvarchar type.

uchar_exprl
—is a character-type column name, variable, or constant expression of
unichar or univarchar type.

start
— specifies the character position at which to begin deleting characters.

length
— specifies the number of charactersto delete.

char_expr2
— isanother character-type column name, variable, or constant
expression of char, varchar, nchar or nvarchar type

uchar_expr2
— isanother character-type column name, variable, or constant
expression of unichar or univarchar type.

157

stuff

Examples

Usage

Standards

158

Example 1

sel ect stuff("abc", 2, 3, "xyz")

axyz

Example 2

sel ect stuff("abcdef", 2, 3, null)
go

aef

Example 3

sel ect stuff("abcdef", 2, 3, "")

a ef

stuff, a string function, deletes length characters from char_expr1 or
uchar_exprl at start, then inserts char_expr2 or uchar_expr2 into
char_exprl or uchar_expr2 at start. For general information about
string functions, see “ String functions’ on page 62.

If the start position or the length is negative, aNULL string is
returned. If the start position is longer than exprl, aNULL stringis
returned. If the length to be deleted is longer than exprl, exprlis
deleted through its last character (see example 1).

If the start position falls in the middle of a surrogate pair, start is
adjusted to be one less. If the start length position fallsin the middle
of asurrogate pair, length is adjusted to be one less.

To use stuff to delete a character, replace expr2 with “NULL” rather
than with empty quotation marks. Using ** *’ to specify a null
character replaces it with a space (see examples 2 and 3).

If char_exprl or uchar_exprl isNULL, returnsNULL. If
char_exprl or uchar_exprlisastring value and char_expr2 or
uchar_expr2 isNULL, replaces the deleted characters with nothing.

If avarchar expression is given as one parameter and a unichar
expression asthe other, the varchar expression isimplicitly converted
to unichar (with possible truncation).

SQL92 — Complience level: Transact-SQL extension

CHAPTER 6 Functions: show_role — valid_user

Permissions

See also

substring

Description

Syntax

Parameters

Examples

Any user can execute stuff.

Functions — replicate, substring

Returnsthe string formed by extracting the specified number of characters
from another string.

substring(expression, start, length)

expression
—isabinary or character column name, variable or constant expression.
Can bechar, nchar, unichar, varchar, univarchar, or nvarchar data, binary
or varbinary.

Start
— specifies the character position at which the substring begins.

length
— specifies the number of charactersin the substring.

Example 1

sel ect au_l nane, substring(au_fname, 1, 1)
from aut hors

Displays the last name and first initial of each author, for example,
“Bennet A.”

Example 2

sel ect substring(upper(au_l name), 1, 3)
from aut hors

Converts the author’s last name to uppercase, then displays the first three
characters.

Example 3

sel ect substring((pub_id + title_id), 1, 6)
fromtitles

Concatenatespub_id andtitle_id, then displaysthefirst six characters of the
resulting string.

Example 4

sel ect substring(xactid,5, 2)

159

sum

Usage

Standards
Permissions

See also

sum

Description

Syntax

Parameters

Examples

160

from sysl ogs

Extracts the lower four digits from abinary field, where each position
represents two binary digits.

e substring, astring function, returns part of acharacter or binary string.
For general information about string functions, see* String functions”
on page 62.

e |If any of the arguments to substring are NULL, substring returns
NULL.

e |f the start position from the beginning of uchar_exprl falsin the
middle of asurrogate pair, start is adjusted to one less. If the start
length position from the beginning of uchar_exprl fallsin the middle
of asurrogate pair, length is adjusted to one less.

SQL92 — Complience level: Transact-SQL extension
Any user can execute substring.

Functions — charindex, patindex, stuff

Returns the total of the values.

sum([all | distinct] expression)

all
—applies sum to al values. all is the default.

distinct
— eliminatesduplicate valuesbefore sum isapplied. distinctisoptional .

expression
—isacolumn name, constant, function, any combination of column
names, constants, and functions connected by arithmetic or bitwise
operators, or a subquery. With aggregates, an expression is usually a
column name. For more information, see “ Expressions’ on page 179.

Example 1

sel ect avg(advance), sun(total _sales)
fromtitles
where type = "busi ness”

CHAPTER 6 Functions: show_role — valid_user

Usage

Standards
Permissions

See also

Calculates the average advance and the sum of total salesfor all business
books. Each of these aggregate functions produces asingle summary value
for @l of the retrieved rows.

Example 2

sel ect type, avg(advance), sun(total _sales)
fromtitles

group by type

Used with agroup by clause, the aggregate functions produce single values
for each group, rather than for the whole table. This statement produces
summary values for each type of book.

Example 3

sel ect pub_id, sum(advance), avg(price)
fromtitles

group by pub_id

havi ng sum(advance) > $25000 and avg(price) > $15

Groups the titles table by publishers, and includes only those groups of
publishers who have paid more than $25,000 in total advances and whose
books average more than $15 in price.

e sum, an aggregate function, finds the sum of all the valuesin a
column. sum can only be used on numeric (integer, floating point, or
money) datatypes. Null values are ignored in calcul ating sums.

e For general information about aggregate functions, see “ Aggregate
functions’ on page 45.

¢ Whenyou sum integer data, Adaptive Server treatstheresult asanint
value, even if the datatype of the column issmallint or tinyint. To avoid
overflow errorsin DB-Library programs, declare all variables for
results of averages or sums as type int.

¢ You cannot use sum with the binary datatypes.

e Sincethisfunction only defines numeric types, use with Unicode
EXPressions generates an error.

SQL92 — Complience level: Transact-SQL extension
Any user can execute sum.

Commands—compute Clause, group by and having Clauses, select, where
Clause

Functions — count, max, min

161

suser_id

suser_id
Description

Syntax

Parameters

Examples

Usage

Standards
Permissions

See also

suser_name

Description

Syntax

Parameters

162

Returns the server user’s ID number from the syslogins table.

suser_id([server_user_name])

Server_user_name
—isan Adaptive Server login name.

Example 1

sel ect suser_id()

Example 2

sel ect suser_id("nmargaret")

e suser_id, asystem function, returnsthe server user’s 1D number from
syslogins. For general information about system functions, see
“System functions”’ on page 64.

e Tofind the user’'sID in a specific database from the sysusers table,
use the user_id system function.

e If noserver_user_nameissupplied, suser_id returnsthe server ID of
the current user.

SQL92 — Complience level: Transact-SQL extension
Any user can execute suser_id.

Functions —suser_name, user_id

Returns the name of the current server user or the user whose server ID is
specified.
suser_name([server_user_id])

Server_user_name
—isan Adaptive Server user ID.

CHAPTER 6 Functions: show_role — valid_user

Examples

Usage

Standards
Permissions

See also

syb_sendmsg
Description

Syntax

Parameters

Examples

Example 1

sel ect suser_name()

Example 2

sel ect suser_nane(4)

mar gar et

* suser_name, asystem function, returnsthe server user’sname. Server
user IDs are stored in syslogins. If no server_user_id issupplied,
suser_name returns the name of the current user.

» For general information about system functions, see “ System
functions’ on page 64.

SQL92 — Complience level: Transact-SQL extension
Any user can execute suser_name.

Functions — suser_id, user_name

Sends a message to a User Datagram Protocol (UDP) port.
syb_sendmsg ip_address, port_number, message

ip_address
—isthe IP address of the machine where the UDP applicationis
running.

port_number
—isthe port number of the UDP port.

message
—isthe message to send. It can be up to 255 charactersin length.

Example 1
sel ect syb_sendmsg("120. 10. 20.5", 3456, "Hello")
Sends the message “Hello” to port 3456 at | P address 120.10.20.5.

163

tan

Usage

Standards
Permissions

See also

tan

Description

Syntax

Parameters

Examples

Usage

164

Example 2

decl are @sg var char (255)

sel ect @msg = "Message to send"

sel ect syb_sendnsg (i p_address, portnum @rsg)
from sendports

wher e username = user_namne()

Readsthe | P address and port number from auser table, and usesavariable
for the message to be sent.

syb_sendmsg is not supported on Windows NT.

To enable the use of UDP messaging, a System Security Officer must
set the configuration parameter allow sendmsg to 1.

No security checksare performed with syb_sendmsg. Sybase strongly
recommends caution when using syb_sendmsg to send sensitive
information across the network. By enabling this functionality, the
user accepts any security problems which result from its use.

For a sample C program that creates a UDP port, see sp_sendmsg.

SQL92 — Complience level: Transact-SQL extension

Any user can execute syb_sendmsg.

System procedure —sp_sendmsg

Returns the tangent of the specified angle (in radians).

tan(angle)

angle

—isthe size of the angle in radians, expressed as a column name,
variable, or expression of type float, real, double precision, or any
datatype that can be implicitly converted to one of these types.

sel ect tan(60)

0. 320040

tan, amathematical function, returnsthetangent of the specified angle
(measured in radians).

CHAPTER 6 Functions: show_role — valid_user

Standards
Permissions

See also

textptr

Description

Syntax

Parameters

Examples

Usage

e For genera information about mathematical functions, see
“Mathematical functions’ on page 60.

SQL92 — Complience level: Transact-SQL extension
Any user can execute tan.

Functions — atan, atn2, degrees, radians

Returns a pointer to the first page of atext or image column.

textptr(column_name)

column_name
—isthe name of atext column.

Example 1

decl are @al binary(16)

sel ect @al = textptr(copy) from bl urbs
where au_id = "486-29-1786"

readtext blurbs.copy @al 1 5

This example uses the textptr function to locate the text column, copy,
associated with au_id 486-29-1786 in the author’s blurbs table. The text
pointer isput into alocal variable @val and supplied as aparameter to the
readtext command, which returns 5 bytes, starting at the second byte
(offset of 1).

Example 2
select au_id, textptr(copy) from bl urbs

Selectsthetitle_id column and the 16-bytetext pointer of the copy column
from the blurbs table.

e textptr, atext and image function, returns the text pointer value, a 16-
byte varbinary value.

e |f atext or animage column has not been initialized by a non-null
insert or by any update statement, textptr returnsaNULL pointer. Use
textvalid to check whether atext pointer exists. You cannot use
writetext or readtext without a valid text pointer.

165

textvalid

Standards
Permissions

See also

textvalid

Description

Syntax

Parameters

Examples

Usage

Standards

Permissions

166

« For general information about text and image functions, see“ Text and
image functions” on page 65.

Note Trailing f in varbinary values are truncated when the values are
stored in tables. If you are storing text pointer values in atable, use
binary as the datatype for the column.

SQL92 — Complience level: Transact-SQL extension
Any user can execute textptr.
Datatypes — text and image datatypes

Functions — textvalid

Returns 1 if the pointer to the specified text columnisvalid; O if it is not.

textvalid("table_name.column_name", textpointer)

“table_name.column_name”
—isthe name of atable and its text column.

textpointer
—isatext pointer value.

select textvalid ("texttest.blurb", textptr(blurb))
fromtexttest

Reports whether avalid text pointer exists for each value in the blurb
column of the texttest table.

e textvalid, atext and image function, checksthat a given text pointer is
valid. Returns 1 if the pointer isvalid or O if it is not.

* Theidentifier for atext or animage column must include the table
name.

« For general information about text and image functions, see“ Text and
image functions” on page 65.

SQL92 — Complience level: Transact-SQL extension

Any user can execute textvalid.

CHAPTER 6 Functions: show_role — valid_user

See also

to_unichar

Description
Syntax

Parameters

Usage

Standards
Permissions

See also

tsequal

Description

Syntax

Parameters

Datatypes — text and image datatypes

Functions — textptr

Returns a unichar expression having the value of the integer expression.
to_unichar (integer_expr)

integer_expr
—isany integer (tinyint, smallint, or int) column name, variable, or
constant expression.

* to_unichar, astring function, converts a Unicode integer valueto a
Unicode character value.

» If aunichar expression refersto only half of a surrogate pair, an error
message appears and the operation is aborted.

o If ainteger_expr isNULL, returns NULL.

» For general information about string functions, see“ String functions’
on page 62.

SQL92 — Complience level: Transact-SQL extension
Any user can execute to_unichar.
Datatypes — text and image datatypes

Functions — char

Compares timestamp values to prevent update on arow that has been
modified since it was selected for browsing.

tsequal(browsed_row_timestamp, stored_row_timestamp)

browsed row_timestamp
—isthetimestamp column of the browsed row.

167

tsequal

stored row_timestamp

Examples

Usage

168

—is the timestamp column of the stored row.

updat e publishers

set city = "Springfield"

where pub_id = "0736"

and tsequal (timestanp, 0x0001000000002ea8)

Retrieves the timestamp column from the current version of the publishers
table and comparesit to the value in the timestamp column that has been

saved. If the values in the two timestamp columns are equal, updates the

row. If the values are not equal, returns an error message.

tsequal, a system function, compares the timestamp column valuesto
prevent an update on arow that has been modified since it was
selected for browsing. For general information about system
functions, see “ System functions” on page 64.

tsequal allows you to use browse mode without calling the dbqual
function in DB-Library. Browse mode supports the ability to perform
updates while viewing data. It isused in front-end applications using
Open Client and a host programming language. A table can be
browsed if its rows have been timestamped.

To browse atable in afront-end application, append the for browse
keywordsto the end of the select statement sent to Adaptive Server.
For example:

Start of select statenent in an Open Client application

for browse

Conpl etion of the Open dient application routine

Thetsequal function should not be used in thewhere clause of aselect
statement, only in the where clause of insert and update statements
where the rest of the where clause matches a single unique row.

If atimestamp column is used as a search clause, it should be
compared like aregular varbinary column; that is, timestampl =
timestamp2.

Timestamping a new table for browsing

When creating a new table for browsing, include a column named
timestamp in the table definition. The column is automatically
assigned a datatype of timestamp; you do not have to specify its
datatype. For example:

CHAPTER 6 Functions: show_role — valid_user

Standards
Permissions

See also

uhighsurr

Description

Syntax

Parameters

Usage

create table newtable(coll int, tinestanp,
col 3 char (7))

Whenever you insert or update a row, Adaptive Server timestamps it
by automatically assigning a unique varbinary value to the timestamp
column.

Timestamping an existing table

¢ To prepare an existing table for browsing, add a column named
timestamp with alter table. For example:

alter table oldtable add tinestanp

adds atimestamp column with aNULL valueto each existing row. To
generate atimestamp, update each existing row without specifying
new column values. For example:

updat e ol dtabl e
set coll = col1l

SQL92 — Complience level: Transact-SQL extension
Any user can execute tsequal.
Datatypes — Timestamp datatype

Returns 1 if the Unicode value at position start isthe high half of a
surrogate pair (which should appear first in the pair). Returns O otherwise.

uhighsurr(uchar_expr,start)

uchar_expr
—is acharacter-type column name, variable, or constant expression of
unichar, Or univarchar type.

start
— specifies the character position to investigate.

* uhighsurr, astring function, allows you to write explicit code for
surrogate handling. Specifically, if a substring starts on a Unicode
character where uhighsurr() is true, you need to extract a substring of
at least 2 Unicode values. (substr will not extract half of a surrogate
pair.)

e If uchar_expr isNULL, returns NULL.

169

ulowsurr

Standards
Permissions

See also

ulowsurr

Description

Syntax

Parameters

Usage

Standards
Permissions

See also

170

« For genera information about string functions, see“ String functions”
on page 62.

SQL92 — Complience level: Transact-SQL extension
Any user can execute uhighsurr.

Functions — ulowsurr

Returns 1 if the Unicode value at position start isthe low half of a
surrogate pair (which should appear second in the pair). Returns 0
otherwise.

ulowsurr(uchar_expr,start)

uchar_expr
—is acharacter-type column name, variable, or constant expression of
unichar, or univarchar type.

start
— specifies the character position to investigate.

e ulowsurr, astring function, allows you to write explicit code around
adjustments performed by substr(), stuff(), and right (). Specifically, if
asubstring ends on a Unicode value where ulowsurr() istrue, the user
knows to extract a substring of 1 less characters (or 1 more). substr ()
does not extract a string that contains an unmatched surrogate pair.

e If uchar_expr isNULL, returns NULL.

» For general information about string functions, see” String functions”
on page 62.

SQL92 — Complience level: Transact-SQL extension
Any user can execute ulowsurr.

Functions — uhighsurr

CHAPTER 6 Functions: show_role — valid_user

upper
Description

Syntax

Parameters

Examples

Usage

Standards
Permissions

See also

uscalar

Description

Syntax

Parameters

Examples

Usage

Returns the uppercase equivalent of the specified string.
upper(char_expr)

char_expr
—isacharacter-type column name, variable, or constant expression of
char, unichar, varchar, nchar, nvarchar or univarchar type.

sel ect upper("abcd")

ABCD

» upper, astring function, converts lowercase to uppercase, returning a
character value.

e |If char_expr or uchar_expr isNULL, returns NULL.
» Charactersthat have no upper-case equivalent are left unmodified.

» If aunichar expression is created containing only half of a surrogate
pair, an error message appears and the operation is aborted.

» For general information about string functions, see“ String functions’
on page 62.

SQL92 — Complience level: Transact-SQL extension
Any user can execute upper.

Functions — lower

Returns the Unicode scalar value for the first Unicode character in an
expression..
uscalar(uchar_expr)

uchar_expr
—is acharacter-type column name, variable, or constant expression of
unichar, Or univarchar type.

e uscalar, astring function, returns the Unicode value for the first
Unicode character in an expression,.

171

used_pgs

Standards
Permissions

See also

used pgs

Description

Syntax

Parameters

Examples

172

e |f uchar_expr isNULL, returns NULL.

e |f uscalar is called on auchar_expr containing an unmatched
surrogate half, and error occurs and the operation is aborted.

« For genera information about string functions, see“ String functions”
on page 62.

SQL92 — Complience level: Transact-SQL extension
Any user can execute uscalar.

Functions — ascii

Returns the number of pages used by atable or index. For an all-pages-
locked table with a clustered index, it returns the sum of the table and
index pages.
used_pgs(object_id, doampg, ioampg)
object_id

—istheobject ID of thetablefor which you want to see the used pages.

To see the pages used by an index, specify the object ID of the table to
which the index belongs.

doampg
—isthe page number for the obj ect all ocation map of atable or clustered
index, stored in the doampg column of sysindexes.

ioampg
—isthe page number for the allocation map of a nonclustered index,
stored in theioampg column of sysindexes.

Example 1

sel ect nane, id, indid, doanpg, ioanpg
from sysi ndexes where id = object_id("titles")

name id indid doanpg i oanpg
titleidind 208003772 1 560 552
titleind 208003772 2 0 456

sel ect used_pgs(208003772, 560, 552)

CHAPTER 6 Functions: show_role — valid_user

Usage

Standards

6
Returns the number of pages used by the data and clustered index of the
titles table.
Example 2

sel ect nane, id, indid, doanpg, ioanpg
from sysi ndexes where id = object_id("stores")

nane id indid doanpg i oanpg

stores 240003886 0 464 0
sel ect used_pgs(240003886, 464, 0)

Returns the number of pages used by the stores table, which has no index.

used_pgs, a system function, returns:

» For all-pages-locked tableswith a clustered index, the sum of the
table and index pages

» For data-only-locked tables and tables with no clustered index,
the number of used pagesin the table

» For clustered and nonclustered indexes on data-only-locked
tables, the number of pagesin the index

In the examples, indid O indicates atable; indid 1 indicates a clustered
index; anindid of 2-250 is a nonclustered index; and an indid of 255
iSstext or image data.

used_pgs only works on objects in the current database.

Each table and each index on atable has an object allocation map
(OAM), which contains information about the number of pages
allocated to and used by an object. This information is updated by
most Adaptive Server processes when pages are allocated or
deallocated. The sp_spaceused system procedure reads these values
to provide quick space estimates. Some dbcc commands update these
values while they perform consistency checks.

For general information about system functions, see “ System
functions’ on page 64.

SQL92 — Complience level: Transact-SQL extension

173

user

Permissions

See also

user

Description

Syntax

Parameters

Examples

Usage

Standards
Permissions

See also

user_id

Description

Syntax

Parameters

174

Any user can execute used_pgs.

Functions —data_pgs, object_id

Returns the name of the current user.
user

None.

sel ect user

e user, asystem function, returns the user’s name.

e |f thesa_role isactive, you are automatically the Database Owner in
any database you are using. Inside a database, the user name of the
Database Owner is aways “dbo”.

« For general information about system functions, see “ System
functions” on page 64.

SQL92 — Complience level: Transact-SQL extension
Any user can execute user.

Functions —user_name

Returns the ID number of the specified user or of the current user in the
database.

user_id([user_name])

user_name
—isthe name of the user.

CHAPTER 6 Functions: show_role — valid_user

Examples

Usage

Standards

Permissions

See also

user_name

Description

Syntax

Example 1

sel ect user_id()

Example 2

sel ect user_id("margaret")

* user_id, asystem function, returns the user’s |D number. For general
information about system functions, see “ System functions’ on page
64.

» user_id reports the number from sysusers in the current database. If
no user_nameis supplied, user_id returnsthe ID of the current user.
To find the server user ID, which is the same number in every
database on Adaptive Server, use suser_id.

* Inside adatabase, the “guest” user ID is always 2.

* Inside adatabase, the user_id of the Database Owner is always 1. If
you have the sa_role active, you are automatically the Database
Owner in any database you are using. To return to your actual user ID,
use set sa_role off before executing user_id. If you are not avalid user
in the database, Adaptive Server returns an error when you use set
sa_role off.

SQL92 — Complience level: Transact-SQL extension

You must System Administrator or System Security Officer to use this
function on a user_name other than your own.

Commands — setuser

Functions — suser_id, user_name

Returnsthe name within the database of the specified user or of the current
user.

user_name([user_id])

175

valid_name

Parameters

Examples

Usage

Standards

Permissions

See also

valid_name

Description

Syntax

Parameters

Examples

176

user_id
—isthelD of auser.

Example 1

sel ect user_nane()

Example 2

sel ect user_nane(4)

mar gar et

e user_name, a system function, returns the user’s name, based on the
user’s 1D inthe current database. For general information about
system functions, see “ System functions” on page 64.

e If nouser_idissupplied, user_name returns the name of the current
user.

« If thesa_role isactive, you are automatically the Database Owner in
any database you are using. Inside a database, the user_name of the
Database Owner is aways “dbo”.

SQL92 — Complience level: Transact-SQL extension

You must bea System Administrator or System Security Officer to usethis
function on auser_id other than your own.

Functions —suser_name, user_id

Returns O if the specified string is not avalid identifier or a number other
than O if the string is avalid identifier.

valid_name(character_expression)

character_expression
—isacharacter-type column name, variable, or constant expression of
char, varchar, nchar or nvarchar type. Constant expressions must be
enclosed in quotation marks.

create procedure chkname

CHAPTER 6 Functions: show_role — valid_user

Usage

Standards
Permissions

See also

valid_user

Description

Syntax

Parameters

Examples

Usage

@vane var char (30)

as
if valid_name(@ane) = 0
print "name not valid"

Creates a procedure to verify that identifiers are valid.

valid_name, a system function, returns O if the character_ expression
isnot avalididentifier (illegal characters, more than 30 byteslong, or
areserved word), or a number other than O if it isavalid identifier.

Adaptive Server identifiers can be a maximum of 30 bytesin length,
whether single-byte or multibyte characters are used. The first
character of an identifier must be either an alphabetic character, as
defined in the current character set, or the underscore (_) character.
Temporary table names, which begin with the pound sign (#), and
local variable names, which begin withthe at sign (@), are exceptions
to thisrule. valid_name returns O for identifiers that begin with the
pound sign (#) and the at sign (@).

For general information about system functions, see System
functions’ on page 64.

SQL92 — Complience level: Transact-SQL extension

Any user can execute valid_name.

System procedure — sp_checkreswords

Returns 1 if the specified ID isavalid user or aliasin at | east one database
on this Adaptive Server.

valid_user(server_user_id)

server_user_id

—isaserver user ID. Server user IDs are stored in the suid column of

syslogins.

sel ect valid_user(4)

valid_user, a system function, returns 1 if the specified ID isavalid
user or aliasin at least one database on this Adaptive Server.

177

valid_user

e For general information about system functions, see “ System
functions’ on page 64.

Standards SQL92 — Complience level: Transact-SQL extension

Permissions You must be a System Administrator or a System Security Officer to use
this function on aserver_user_id other than your own.

See also System procedures — sp_addlogin, sp_adduser

178

CHAPTER 7

Expressions

Expressions, ldentifiers, and
Wildcard Characters

This chapter describes Transact-SQL expressions, valid identifiers, and
wildcard characters.

An expression is a combination of one or more constants, literals,
functions, columnidentifiersand/or variables, separated by operators, that
returns a single value. Expressions can be of several types, including
arithmetic, relational, logical (or Boolean), and character string. In some
Transact-SQL clauses, a subquery can be used in an expression. A case
expression can be used in an expression.

Table 7-1 lists the types of expressions that are used in Adaptive Server
syntax statements.

Table 7-1: Types of expressions used in syntax statements

Usage Definition
expression Can include constants, literals, functions, column identifiers,

variables, or parameters

logical expression

An expression that returns TRUE, FALSE, or UNKNOWN

constant expression

An expression that always returns the same value, such as“5+3" or
“ABCDE”

float_expr Any floating-point expression or an expression that implicitly
convertsto afloating value

integer_expr Any integer expression or an expression that implicitly convertsto an
integer value

numeric_expr Any numeric expression that returns asingle value

char_expr Any expression that returns a single character-type value

binary_expression

An expression that returns a single binary or varbinary value

179

Expressions

Arithmetic and character expressions
The general pattern for arithmetic and character expressionsis:

{constant | column_name | function | (subquery)
| (case_expression)}
[{arithmetic_operator | bitwise_operator |
string_operator | comparison_operator }
{constant | column_name | function | (subquery)
| case_expression}]...

Relational and logical expressions

A logical expression or relational expression returns TRUE, FALSE, or
UNKNOWN. The general patterns are:

expression comparison_operator [any | all] expression
expression [not] in expression

[not]exists expression

expression [not] between expression and expression

expression [not] like "match_string"
[escape "escape_character "]

not expression like "match_string"
[escape "escape_character "]

expression is [not] null
not logical_expression
logical_expression {and | or} logical_expression

Operator precedence

Operators have the following precedence levels, where 1 is the highest
level and 6 isthe lowest:

1 unary (single argument) - + ~
* [%

binary (two argument) + - & |
not

and

o o0~ WN

or

180

CHAPTER 7 Expressions, Identifiers, and Wildcard Characters

When al operatorsin an expression are at the same level, the order of
execution isleft to right. You can change the order of execution with
parentheses—the most deeply nested expression is processed first.

Arithmetic operators

Bitwise operators

Adaptive Server uses the following arithmetic operators:

Table 7-2: Arithmetic operators

Operator Meaning
+ Addition
- Subtraction
* Multiplication
/ Division
% Modulo (Transact-SQL extension)

Addition, subtraction, division, and multiplication can be used on exact
numeric, approximate numeric, and money type columns.

The modulo operator cannot be used on smallmoney, money, float or real
columns. Modulo finds the integer remainder after adivision involving
two whole numbers. For example, 21 % 11 = 10 because 21 divided by 11
equals 1 with aremainder of 10.

When you perform arithmetic operations on mixed datatypes, for example
float and int, Adaptive Server follows specific rules for determining the
type of the result. For moreinformation, see Chapter 1, “ System and User-
Defined Datatypes.”

The bitwise operators are a Transact-SQL extension for use with integer
type data. These operators convert each integer operand into its binary
representation, then evaluate the operands column by column. A value of
1 correspondsto true; avalue of O corresponds to false.

Table 7-3 summarizesthe resultsfor operands of 0 and 1. If either operand
isNULL, the bitwise operator returns NULL:

181

Expressions

Table 7-3: Truth tables for bitwise operations

& (and) 1 0
1 1 0

0 0 0
[(or)

1 1

0 1

A (exclusive or) 1

1 1

0 1

~ (not)

1 FALSE

0 0

The examplesin Table 7-4 use two tinyint arguments, A = 170
(10101010 in binary form) and B = 75 (01001011 in binary form).

Table 7-4: Examples of bitwise operations

Operation Binary Form Result Explanation

(A& B) 10101010 10 Result column equals 1 if both A and B are
01001011 1. Otherwise, result column equals 0.
00001010

(A|B) 10101010 235 Result column equals 1 if either A or B, or
01001011 both, is 1. Otherwise, result column equalsO
11101011

(A"B) 10101010 225 Result column equals 1 if either A or B, but
01001011 not both, is 1
11100001

(~A) 10101010 85 All 1'sare changed to O's and all
------------ Ostol's
01010101

182

CHAPTER 7 Expressions, Identifiers, and Wildcard Characters

String concatenation operator

The string operator + can be used to concatenate two or more character or
binary expressions. For example:

select Nane = (au_lname + ", " + au_fnane)

from aut hors

Displays author names under the column heading Name in last-name
first-name order, with a comma after the last name; for example,
“Bennett, Abraham.”

sel ect "abc" + "" + "def"

Returns the string “abc def”. The empty string is interpreted as a
single spacein al char, varchar, unichar, nchar, nvarchar, and text
concatenation, and in varchar and univarchar insert and assignment
statements.

When concatenating non-character, non-binary expressions, always use
convert:

sel ect "The date is " +
convert (varchar(12), getdate())

A string concatenated with NUL L evaluatesto the value of the string. This
is an exception to the SQL standard, which states that a string
concatenated with aNULL should evaluate to NULL.

Com parison operators
Adaptive Server uses the comparison operators listed in Table 7-5:

183

Expressions

Table 7-5: Comparison operators

Operator Meaning

= Equal to

> Greater than

< Lessthan

>= Greater than or equal to

<= Lessthan or equal to

< Not equal to

I= Not equal to (Transact-SQL extension)

1> Not greater than (Transact-SQL extension)
I< Not less than (Transact-SQL extension)

In comparing character data, < means closer to the beginning of the
server’s sort order and > means closer to the end of the sort order.
Uppercase and lowercase |etters are equal in a case-insensitive sort order.
Use sp_helpsort to see the sort order for your Adaptive Server. Trailing
blanksareignored for comparison purposes. So, for example, “Dirk” isthe
same as “Dirk .

In comparing dates, < means earlier and > means | ater.

Put single or double quotes around al character and datetime data used
with a comparison operator:

= "Bennet"
> "May 22 1947"

Nonstandard operators
The following operators are Transact-SQL extensions:
e Modulo operator: %
» Negative comparison operators: !>, I<, 1=
e Bitwise operators: ~, #, |, &

e Join operators: *= and =*

184

CHAPTER 7 Expressions, Identifiers, and Wildcard Characters

Using any, all and in

any isused with <, >, or = and asubquery. It returns results when any value
retrieved in the subquery matches the value in the where or having clause
of the outer statement. For moreinformation, seethe Transact-SQL User’s
Guide.

all is used with < or > and a subquery. It returns results when all values
retrieved in the subquery are less than (<) or greater than (>) thevaluein
the where or having clause of the outer statement. For more information,
see the Transact-SQL User’s Guide.

in returns results when any value returned by the second expression
matches the value in the first expression. The second expression must be
asubquery or alist of values enclosed in parentheses. in is equivalent to =
any.For more information, see where Clause.

Negating and testing

Ranges

not hegates the meaning of a keyword or logical expression.

Use exists, followed by a subguery, to test for the existence of a particular
result.

between is the range-start keyword; and is the range-end keyword. The
range:

where col uml between x and y
isinclusive.
Therange:

where columl > x and columl <y

isnot inclusive.

Using nulls in expressions

Useis null or is not null in queries on columns defined to allow null values.

185

Expressions

An expression with a bitwise or arithmetic operator evaluatesto NULL if
any of the operands are null. For example:

1 + columl

evaluatesto NULL if columnl isNULL.

Comparisons that return TRUE

In general, the result of comparing null valuesis UNKNOWN, sinceitis
not possibleto determine whether NULL isequal (or not equal) to agiven
value or to another NULL. However, the following cases return TRUE
when expression is any column, variable or literal, or combination of
these, which evaluates as NULL:

e expressionis null
e expression = null

e expression = @x, where @x is avariable or parameter containing
NULL. This exception facilitates writing stored procedures with null
default parameters.

e expression!=n, wherenisalitera that does not contain NULL, and
expression evaluatesto NULL.

The negative versions of these expressions return TRUE when the
expression does not evaluate to NULL:

e expression is not null
e expression!=null
e expression != @x

Notethat the far right side of these exceptionsisaliteral null, or avariable
or parameter containing NULL. If the far right side of the comparisonis
an expression (such as @nullvar + 1), the entire expression evaluates to
NULL.

Following these rules, null column values do not join with other null
column val ues. Comparing null column valuesto other null column values
in awhere clause always returns UNKNOWN for null values, regardless
of the comparison operator, and the rows are not included in the results.
For example, this query returns no result rows where columnl contains
NULL in both tables (although it may return other rows):

sel ect columl
fromtabl el, table2

186

CHAPTER 7 Expressions, Identifiers, and Wildcard Characters

where tabl el.columl = tabl e2. col uml

Difference between FALSE and UNKNOWN

Although neither FALSE nor UNKNOWN returns values, thereis an
important logical difference between FAL SE and UNKNOWN, because
the opposite of false (“not false”) istrue. For example,

“1=2" evaluatesto false and its opposite, “1 = 2", evaluatesto true. But
“not unknown” is still unknown. If null values are included in a
comparison, you cannot negate the expression to get the opposite set of
rows or the opposite truth value.

Using “NULL” as a character string

Only columnsfor which NULL was specified in the create table statement
and into which you have explicitly entered NULL (no quotes), or into
which no data has been entered, contain null values. Avoid entering the
character string “NULL"” (with quotes) as data for a character column. It
can only lead to confusion. Use “N/A”, “none”, or asimilar valueinstead.
When you want to enter the value NULL explicitly, do not use single or
double quotes.

NULL compared to the empty string

The empty string (“ "or * ') isalways stored as asingle space in variables
and column data. This concatenation statement:

"abc" + "" + "def"

is equivalent to “abc def”, not to “abedef”. The empty string is never
evaluated asNULL.

Connecting expressions

and connects two expressions and returns results when both are true. or
connects two or more conditions and returns results when either of the
conditionsistrue.

When more than one logical operator is used in a statement, and is
evaluated before or. You can change the order of execution with
parentheses.

187

Expressions

Table 7-6 shows the results of logical operations, including those that
involve null values:

Table 7-6: Truth tables for logical expressions

and TRUE FALSE NULL

TRUE TRUE FALSE UNKNOWN
FALSE FALSE FALSE FALSE
NULL UNKNOWN FALSE UNKNOWN
or TRUE FALSE NULL

TRUE TRUE TRUE TRUE
FALSE TRUE FALSE UNKNOWN
NULL TRUE UNKNOWN UNKNOWN
not

TRUE FALSE

FALSE TRUE

NULL UNKNOWN

The result UNKNOWN indicates that one or more of the expressions
evaluatesto NULL, and that the result of the operation cannot be
determined to be either TRUE or FALSE. See“Using nullsin
expressions’ on page 185 for more information.

Using parentheses in expressions

Parentheses can be used to group the elementsin an expression. When
“expression” isgiven asavariablein asyntax statement, asimple
expression is assumed. “Logical expression” is specified when only a
logical expression is acceptable.

Comparing character expressions

Character constant expressionsaretreated asvarchar. If they are compared
with non-varchar variables or column data, the datatype precedence rules
are used in the comparison (that is, the datatype with lower precedenceis
converted to the datatype with higher precedence). If implicit datatype
conversion is not supported, you must use the convert function.

188

CHAPTER 7 Expressions, Identifiers, and Wildcard Characters

Comparison of a char expression to avarchar expression follows the
datatype precedence rule; the “lower” datatype is converted to the
“higher” datatype. All varchar expressions are converted to char (that is,
trailing blanks are appended) for the comparison. If a unichar expression
is compared to a char (varchar, nchar, nvarchar) expression, the latter is
implicitly converted to unichar.

Using the empty string

The empty string (“”) or (*’) isinterpreted as asingle blank in insert or
assignment statements on varchar or univarchar data. In concatenation of
varchar, char, nchar, nvarchar data, the empty string isinterpreted asa
single space; for example:

"abc" + "' + "def"

is stored as “abc def”. The empty string is never evaluated asNULL.

Including quotation marks in character expressions

There aretwo waysto specify literal quoteswithin achar, or varchar entry.
The first method is to double the quotes. For example, if you begin a
character entry with a single quote and you want to include asingle quote
as part of the entry, use two single quotes:

"I don’’t understand.’
With double quotes:
"He said, ""It's not really confusing."""

The second method is to enclose a quote in the opposite kind of quote
mark. In other words, surround an entry containing a double quote with
single quotes (or vice versa). Here are some examples:

'Ceorge said, "There nust be a better way."’
"I'sn’t there a better way?"
" George asked, "lIsn”t there a better way?"’

189

Identifiers

Using the continuation character

Identifiers

To continue a character string to the next line on your screen, enter a
backslash (\) before going to the next line.

Identifiersare names for database obj ects such as databases, tables, views,
columns, indexes, triggers, procedures, defaults, rules, and cursors.

Adaptive Server identifiers can be a maximum of 30 bytesin length,
whether single-byte or multibyte characters are used. Thefirst character of
an identifier must be either an al phabetic character, as defined in the
current character set, or the underscore (_) character.

Note Temporary table names, which begin with the pound sign (#), and
local variable names, which begin with the at sign(@), are exceptionsto
thisrule.

Subsequent characters can include | etters, numbers, the symbols#, @, _,
and currency symbols such as $ (dollars), ¥ (yen), and £ (pound sterling).
Identifiers cannot include special characterssuch as!, %, *, &, *,and . or
embedded spaces.

You cannot use areserved word, such as a Transact-SQL command, asan
identifier. For acompletelist of reserved words, see Chapter 8, “ Reserved
Words.”

Tables beginning with # (temporary tables)

190

Tables whose names begin with the pound sign (#) are temporary tables.
You cannot create other types of objects whose names begin with the
pound sign.

Adaptive Server performs special operations on temporary table namesto
maintain unigue naming on a per-session basis. Long temporary table
names are truncated to 13 characters (including the pound sign); short
names are padded to 13 characters with underscores (). A 17-digit
numeric suffix that is unique for an Adaptive Server session is appended.

CHAPTER 7 Expressions, Identifiers, and Wildcard Characters

Case sensitivity and identifiers

Sensitivity to the case (upper or lower) of identifiers and data depends on
the sort order installed on your Adaptive Server. Case sensitivity can be
changed for single-byte character sets by reconfiguring Adaptive Server’'s
sort order (see the System Administration Guide for more information).
Caseissignificant in utility program options.

If Adaptive Server isinstalled with a case-insensitive sort order, you
cannot create a table named MYTABLE if atable named MyTable or
mytable aready exists. Similarly, this command:

select * from MYTABLE

will return rows from MYTABLE, MyTable, or mytable, or any
combination of uppercase and lowercase |ettersin the name.

Uniqueness of object names

Object names need not be unique in a database. However, column names
and index names must be unique within atable, and other object names
must be unique for each owner within a database. Database names must
be unique on Adaptive Server.

Using delimited identifiers

Delimited identifiers are object names enclosed in double quotes. Using
delimited identifiers allows you to avoid certain restrictions on object
names. Table, view, and column names can be delimited by quotes; other
object names cannot.

Delimited identifiers can be reserved words, can begin with non-
alphabetic characters, and can include characters that would not otherwise
be allowed. They cannot exceed 28 bytes.

Warning! Delimited identifiers may not be recognized by all front-end
applications and should not be used as parameters to system procedures.

Before creating or referencing a delimited identifier, you must execute:

set quoted_identifier on

191

Identifiers

Each timeyou usethe delimited identifier in astatement, you must enclose
it in double quotes. For example:

create table "lone"(col 1l char(3))
create table "include spaces" (coll int)
create table "grant"("add" int)

insert "grant"("add") values (3)

While the quoted_identifier option is turned on, do not use double quotes
around character or date strings; use single quotes instead. Delimiting
these strings with double quotes causes Adaptive Server to treat them as
identifiers. For example, to insert a character string into coll1 of 1table,
use:

insert "lone"(col1l) values (’abc’)
not:
insert "lone"(col1l) values ("abc")

To insert asingle quote into a column, use two consecutive single
guotation marks. For example, to insert the characters“a’b” into col1 use:

insert "lone"(coll) values('a 'b")

Identifying tables or columns by their qualified object name

You can uniquely identify atable or column by adding other names that
qualify it—the database name, owner’s name, and (for acolumn) thetable
or view name. Each qualifier is separated from the next one by a period.
For example:

dat abase. owner. t abl e_nane. col unm_nane

dat abase. owner. vi ew_nane. col urm_nane
The naming conventions are;

[[dat abase.] owner.]t abl e_nane

[[dat abase.] owner.]vi ew_name

Using delimited identifiers within an object name

192

If you use set quoted_identifier on, you can use double quotes around
individual parts of a qualified object name. Use a separate pair of quotes
for each qualifier that requires quotes. For example, use:

CHAPTER 7 Expressions, Identifiers, and Wildcard Characters

dat abase. owner. "t abl e_name". " col uim_nane"
rather than:

dat abase. owner . "t abl e_nane. col um_nange"

Omitting the owner name

You can omit the intermediate elementsin aname and use dotsto indicate
their positions, aslong as the system is given enough information to
identify the object:

dat abase. . t abl e_nane

dat abase. . vi ew_nane

Referencing your own objects in the current database

You need not use the database name or owner nameto reference your own
objectsin the current database. The default value for owner isthe current
user, and the default value for database is the current database.

If you reference an object without qualifying it with the database name and
owner name, Adaptive Server triesto find the object in the current
database among the objects you own.

Referencing objects owned by the database owner

If you omit the owner name and you do not own an object by that name,
Adaptive Server looks for objects of that name owned by the Database
Owner. You must qualify objects owned by the Database Owner only if
you own an object of the same name, but you want to use the object owned
by the Database Owner. However, you must qualify objects owned by
other users with the user’s name, whether or not you own objects of the
same name.

Using qualified identifiers consistently

When qualifying acolumn name and table namein the same statement, be
sureto use the same qualifying expressionsfor each; they are evaluated as
strings and must match; otherwise, an error is returned. The second of the
following examplesisincorrect because the syntax style for the column
name does not match the syntax style used for the table name.

193

Identifiers

1 select deno.mary. publishers.city
from deno. mary. publi shers

Bost on
Washi ngt on
Ber kel ey

2 select deno.nmary. publishers.city
from deno. . publishers

The colum prefix "deno. mary. publishers" does not
match a table nane or alias name used in the query.

Determining whether an identifier is valid

Use the system function valid_name, after changing character sets or
before creating atable or view, to determine whether the object nameis
acceptable to Adaptive Server. Hereis the syntax:

sel ect valid_nane(" bject _nane")

If object_nameis not avalid identifier (for example, if it containsillegal
characters or is more than 30 bytes long), Adaptive Server returns 0. If
object_nameisavalid identifier, Adaptive Server returns a nonzero
number.

Renaming database objects

Rename user objects (including user-defined datatypes) with sp_rename.

Warning! After you rename atable or column, you must redefine all
procedures, triggers, and views that depend on the renamed object.

194

CHAPTER 7 Expressions, Identifiers, and Wildcard Characters

Using multibyte character sets

In multibyte character sets, awider range of charactersisavailablefor use
inidentifiers. For example, on a server with the Japanese language
installed, the following types of characters may be used as the first
character of an identifier: Zenkaku or Hankaku Katakana, Hiragana,
Kanji, Romagji, Greek, Cyrillic, or ASCII.

Although Hankaku K atakana characters are legal in identifiers on
Japanese systems, they are not recommended for use in heterogeneous
systems. These characters cannot be converted between the EUC-JIS and
Shift-JI'S character sets.

The same istrue for some 8-bit European characters. For example, the
character “E,” the OE ligature, is part of the Macintosh character set
(codepoint 0XCE). This character does not exist inthe |SO 8859-1 (iso_1)
character set. If “(E’ existsin data being converted from the Macintosh to
the 1SO 8859-1 character set, it causes a conversion error.

If an object identifier contains a character that cannot be converted, the
client loses direct access to that object.

Pattern matching with wildcard characters

Wildcard characters represent one or more characters, or arange of
characters, in amatch_string. A match_string is acharacter string
containing the pattern to find in the expression. It can be any combination
of constants, variables, and column names or a concatenated expression,
such as:

like @ariable + "% .

If the match string is a constant, it must always be enclosed in single or
double quotes.

Use wildcard characters with the keyword like to find character and date
strings that match a particular pattern. You cannot use like to search for
seconds or milliseconds (see “ Using wildcard characters with datetime
data” on page 201).

Use wildcard characters in where and having clauses to find character or
date/time information that is like—or not like—the match string:

195

Pattern matching with wildcard characters

Using not like

196

{where | having} [not]
expression [not] like match_string
[escape "escape_character "]

expression can be any combination of column names, constants, or
functions with a character value.

Wildcard characters used without like have no special meaning. For
example, this query finds any phone numbers that start with the four
characters“415%":

sel ect phone
from aut hors
where phone = "415%

Usenot like to find stringsthat do not match aparticul ar pattern. Thesetwo
queriesare equivalent: they find all the phone numbersin the authors table
that do not begin with the 415 area code.

sel ect phone
from aut hors
wher e phone not |ike "415%

sel ect phone
from aut hors
where not phone |ike "415%

For example, thisquery findsthe system tables in adatabase whose names
begin with “sys”:
sel ect name

from sysobj ects
where nane |ike "sys%

To see dll the objects that are not system tables, use

not |ike "sys%
If you have atotal of 32 objects and like finds 13 names that match the
pattern, not like will find the 19 objects that do not match the pattern.

not like and the negative wildcard character [*] may give different results
(see“The caret (*) wildcard character” on page 199). You cannot always
duplicate not like patterns with like and ~. Thisis because not like finds the
items that do not match the entire like pattern, but like with negative
wildcard characters is evaluated one character at atime.

CHAPTER 7 Expressions, Identifiers, and Wildcard Characters

A pattern such as like “[*s][*y][*s]%" may not produce the same results.
Instead of 19, you might get only 14, with all the namesthat begin with“s’
or have“y” asthe second letter or have “s’ asthethird letter eliminated
from the results, aswell as the system table names. Thisis because match
strings with negative wildcard characters are evaluated in steps, one
character at atime. If the match fails at any point in the evaluation, it is
eliminated.

Case and accent insensitivity

If your Adaptive Server uses a case-insensitive sort order, caseisignored
when comparing expression and match_string. For example, this clause:

where col _nane |ike "Snt4

would return “ Smith,” “smith,” and “SMITH” on a case-insensitive
Adaptive Server.

If your Adaptive Server is also accent-insensitive, it treats all accented
characters asequal to each other and to their unaccented counterparts, both
uppercase and lowercase. The sp_helpsort system procedure displays the
characters that are treated as equivalent, displaying an “=" between them.

Using wildcard characters

You can use the match string with anumber of wildcard characters, which
arediscussed in detail in the following sections. Table 7-7 summarizesthe
wildcard characters:

Table 7-7: Wildcard characters used with like

Symbol Meaning

% Any string of 0 or more characters

_ Any single character

[1 Any single character within the specified range ([a-f]) or set
([abcdef])

" Any single character not within the specified range (["a-f])
or set ([“abcdef])

Enclose the wildcard character and the match string in single or double
quotes (like “[dD]eFr_nce”).

197

Pattern matching with wildcard characters

The percent sigh (%) wildcard character

Use the % wildcard character to represent any string of zero or more
characters. For example, to find all the phone numbersin the authors table
that begin with the 415 area code:

sel ect phone
from aut hors
where phone |ike "415%

To find names that have the characters “en” in them (Bennet, Green,
McBadden):

sel ect au_l nane
from aut hors
where au_l nane |ike "% n%

Trailing blanks following “%" in alike clause are truncated to asingle
trailing blank. For example, “%" followed by two spaces matches

“X "(one space); “X " (two spaces); “X " (three spaces), or any humber
of trailing spaces.

The underscore () wildcard character

Usethe _wildcard character to represent any single character. For
example, to find all six-letter names that end with “heryl” (for example,
Cheryl):

sel ect au_fnane

from aut hors
where au_fnane |ike " _heryl"

Bracketed ([]) characters

198

Use brackets to enclose arange of characters, such as[af], or a set of
characters such as [a2Br]. When ranges are used, al valuesin the sort
order between (and including) rangespecl and rangespec? are returned.
For example, “[0-z" matches 0-9, A-Z and a-z (and several punctuation
characters) in 7-bit ASCII.

To find names ending with “inger” and beginning with any single
character between M and Z:
sel ect au_l nane

from aut hors
where au_l nane like "[MZ]inger"

To find both “DeFrance” and “ deFrance’:

CHAPTER 7 Expressions, Identifiers, and Wildcard Characters

sel ect au_l nane
from aut hors
where au_l nane |i ke "[dD] eFrance”

The caret (*) wildcard character

The caret is the negative wildcard character. Use it to find strings that do
not match a particular pattern. For example, “[*af]" finds strings that are
not in the range a-f and “[*a2bR]” finds strings that are not “a,” “2,” “b,”
or “R.

To find names beginning with “M” where the second letter isnot “c”:

sel ect au_l nane
from aut hors
where au_l nane |ike "M ~c]%

When ranges are used, all valuesin the sort order between (and including)
rangespecl and rangespec? are returned. For example,

“[0-Z]" matches 0-9, A-Z , &z, and several punctuation charactersin 7-bit
ASCII.

Using multibyte wildcard characters

If the multibyte character set configured on your Adaptive Server defines
equivalent double-byte characters for the wildcard characters _, %, - [,],

and *, you can substitute the equivalent character in the match string. The
underscore equivalent represents either asingle- or double-byte character
in the match string.

Using wildcard characters as literal characters

To search for the occurrence of %, _, [,], or * within astring, you must use
an escape character. When awildcard character isused in conjunction with
an escape character, Adaptive Server interprets the wildcard character
literally, rather than using it to represent other characters.

Adaptive Server provides two types of escape characters:
» Square brackets (a Transact-SQL extension)

* Any single character that immediately follows an escape clause
(compliant with the SQL standards)

199

Pattern matching with wildcard characters

Using square brackets ([])as escape characters

Use square brackets as escape characters for the percent sign, the
underscore, and the left bracket. The right bracket does not need an escape
character; useit by itself. If you use the hyphen as aliteral character, it
must be the first character inside a set of square brackets.

Table 7-8 shows examples of square brackets used as escape characters

with like.
Table 7-8: Using square brackets to search for wildcard characters
like predicate Meaning
like "5%" 5 followed by any string of 0 or more characters
like "5[%]" 5%
like "_n" an, in, on (and so on)
like "[_]n" n
like "[a-cdf]" ab,c dorf
like "[-acdf]" -,a.¢dorf
like "[[1" [
like "T"]
like “[[Jab]” []ab

Using the escape clause

Usethe escape clauseto specify an escape character. Any single character
in the server’s default character set can be used as an escape character. If
you try to use more than one character as an escape character, Adaptive
Server generates an exception.

Do not use existing wildcard characters as escape characters because:

* If you specify the underscore (_) or percent sign (%) as an escape
character, it loses its special meaning within that like predicate and
acts only as an escape character.

* If you specify theleft or right bracket ([or]) as an escape character,
the Transact-SQL meaning of the bracket is disabled within that like
predicate.

* If you specify the hyphen (-) or caret (") as an escape character, it
loses its special meaning and acts only as an escape character.

An escape character retainsits special meaning within square brackets,
unlike wildcard characters such as the underscore, the percent sign, and
the open bracket.

200

CHAPTER 7 Expressions, Identifiers, and Wildcard Characters

Theescape character isvalid only withinitslike predicate and hasno effect
on other like predicates contained in the same statement. The only
characters that are valid following an escape character are the wildcard
characters (_, %, [,], or []), and the escape character itself. The escape
character affectsonly the character followingit, and subsequent characters
are not affected by it.

If the pattern containstwo literal occurrences of the character that happens
to be the escape character, the string must contain four consecutive escape
characters. If the escape character does not divide the pattern into pieces

of one or two characters, Adaptive Server returns an error message. Table
7-9 shows examples of escape clauses used with like.

Table 7-9: Using the escape clause

like predicate Meaning

like "5@%" escape "@" 5%

like "*_n" escape "*" _n

like "%80@%%" escape "@" String containing 80%
like "*_sql**%" escape "*" String containing _sgl*
like "Yor#### _#%%" escape "#" String containing ## %

Using wildcard characters with datetime data

When you use like with datetime values, Adaptive Server converts the
dates to the standard datetime format, then to varchar. Since the standard
storage format does not include seconds or milliseconds, you cannot
search for seconds or milliseconds with like and a pattern.

It isagood ideato use like when you search for datetime values, since
datetime entries may contain a variety of date parts. For example, if you
insert the value “9:20" and the current date into a column named
arrival_time, the clause:

where arrival _time = '9:20

would not find the value, because Adaptive Server convertsthe entry into
“Jan 1 1900 9:20AM.” However, the following clause would find this
value:

where arrival _time |ike '9%9:20%

201

Pattern matching with wildcard characters

202

CHAPTER 8 Reserved Words

Keywords, also known as reserved words, are words that have special
meanings. This chapter lists Transact-SQL and SQL 92 keywords.

Transact-SQL reserved words

The words in the following list are reserved by Adaptive Server as
keywords (part of SQL command syntax). They cannot be used as names
of database objects such as databases, tables, rules, or defaults. They can
be used as names of local variables and as stored procedure parameter
names.

To find the names of existing objects that are reserved words, use
sp_checkreswords.

A

add, al, ater, and, any, arith_overflow, as, asc, at, authorization, avg
B

begin, between, break, browse, bulk, by

C

cascade, case, char_convert, check, checkpoint, close, clustered, coalesce,
commit, compute, confirm, connect, constraint, continue, controlrow,
convert, count, create, current, cursor

D

database, dbcc, deallocate, declare, default, delete, desc, deterministic,
disk distinct, double, drop, dummy, dump

E

else, end, endtran, errlvl, errordata, errorexit, escape, except, exclusive,
eXec, execute, exists, exit, exp_row_size, external

203

Transact-SQL reserved words

204

F
fetch, fillfactor, for, foreign, from, func, function
G

goto, grant, group

H

having, holdlock

I

identity, identity _gap, identity insert, identity_start, if, in, index, inout,
insert, install, intersect, into, is, isolation

J

jar, join

K

key, kill

L

level, like, lineno, load, lock

M

max, max_rows_per_page, min, mirror, mirrorexit, modify
N

national, new, noholdlock, nonclustered, not, null, nullif,
numeric_truncation

O

of, off, offsets, on, once, online, only, open, option, or, order, out, output,
over

P

partition, perm, permanent, plan, precision, prepare, primary, print,
privileges, proc, procedure, processexit, proxy_table, public

Q

quiesce

CHAPTER 8 Reserved Words

SQL92 reserved

R

raiserror, read, readpast, readtext, reconfigure, references remove, reorg,
replace, replication, reservepagegap, return, returns, revoke, role,
rollback, rowcount, rows, rule

S

save, schema, select, set, setuser, shared, shutdown, some, statistics,
stringsize, stripe, sum, syb_identity, syb _restree, syb_terminate

T
table, temp, temporary, textsize, to, tran, transaction, trigger, truncate,
tsequal

U

union, unique, unpartition, update, use, user, user_option, using

Y,

values, varying, view

w

waitfor, when, where, while, with, work, writetext

words

Adaptive Server includes entry-level SQL 92 features. Full SQL92
implementation includes the words listed in the following tables as
command syntax. Upgrading identifiers can be a complex process;
therefore, we are providing thislist for your convenience. The publication
of thisinformation does not commit Sybase to providing all of these
SQL 92 features in subsequent releases. In addition, subsequent rel eases
may include keywords not included in thislist.

Thewordsin the following list are SQL 92 keywords that are not reserved
words in Transact-SQL.

A

absolute, action, allocate, are, assertion

205

SQL92 reserved words

B
bit, bit_length, both
C

cascaded, case, cast, catalog, char, char_length, character,
character_length, coalesce, collate, collation, column, connection,
constraints, corresponding, cross, current_date, current_time,
current_timestamp, current_user

D

date, day, dec, decimal, deferrable, deferred, describe, descriptor,
diagnostics, disconnect, domain

E

end-exec, exception, extract
F

false, first, float, found, full
G

get, global, go

H

hour

I

immediate, indicator, initially, inner, input, insensitive, int, integer,
interval

J

join

L

language, last, leading, left, local, lower
M

match, minute, module, month

N

names, natural, nchar, next, no, nullif, numeric

206

CHAPTER 8 Reserved Words

o)

octet_|length, outer, output, overlaps
P

pad, partial, position, preserve, prior
R

real, relative, restrict, right

S

scroll, second, section, session_user , size, smallint, space, sql, sglcode,
sglerror, sglstate, substring, system_user

T

then, time, timestamp, timezone_hour, timezone_minute, trailing,
trandate, trandlation, trim, true

U

unknown, upper, usage

\%

value, varchar

W

when, whenever, write, year
Z

zone

Potential SQL92 reserved words

If you are using the ISO/IEC 9075:1989 standard, also avoid using the
words shown in the following list because these words may become
SQL92 reserved words in the future.

A
after, alias, async

207

Potential SQL92 reserved words

B

before, boolean, breadth
C

call, completion, cycle
D

data, depth, dictionary
E

each, elself, equals

G

genera

I

ignore

L

leave, less, limit, loop

M

modify

N

new, none

o]

object, oid, old, operation, operators, others

P

parameters, pendant, preorder, private, protected
R

recursive, ref, referencing, resignal, return, returns, routine, row
S

savepoint, search, sensitive, sequence, signal, similar, sglexception,
structure

T
test, there, type

208

CHAPTER 8 Reserved Words

U

under

\%

variable, virtual, visible
W

wait, without

209

Potential SQL92 reserved words

210

CHAPTER 9

SQLSTATE Codes and Messages

This chapter describes Adaptive Server’'s SQL STATE status codes and
their associated messages. SQL STATE codes are required for entry level
SQL92 compliance. They provide diagnostic information about two types
of conditions:

* Warnings— conditions that require user notification but are not
serious enough to prevent a SQL statement from executing
successfully

» Exceptions — conditions that prevent a SQL statement from having
any effect on the database

Each SQLSTATE code consists of a 2-character class followed by a 3-
character subclass. The class specifies general information about error
type. The subclass specifies more specific information.

SQL STATE codes are stored in the sysmessages system table, along with
the messages that display when these conditions are detected. Not all
Adaptive Server error conditions are associated with a SQLSTATE
code—only those mandated by SQL 92. In some cases, multiple Adaptive
Server error conditions are associated with asingle SQLSTATE value.

Warnings
Adaptive Server currently detects only one SQLSTATE warning
condition, which is described in Table 9-1:
Table 9-1: SQLSTATE warnings
Message Value Description

Warning - null value eliminated in set function. 01003 Occurs when you use an aggregate function (avg,

max, min, sum, Or count) on an expression with a
null value.

211

Exceptions

Exceptions

Adaptive Server detects the following types of exceptions:

Cardinality violations

Data exceptions

Integrity constraint violations

Invalid cursor states

Syntax errors and access rule violations
Transaction rollbacks

with check option violations

Exception conditions are described in Table 9-2 through Table 9-8. Each
class of exceptions appearsin its own table. Within each table, conditions
are sorted a phabetically by message text.

Cardinality violations

Cardinality violations occur when a query that should return only asingle
row returns more than one row to an Embedded SQL ™ application.

Table 9-2: Cardinality violations

Message Value Description

Subquery returned more than 1 value. Thisis 21000 Occurs when:

illegal when the subquery follows =, 1=, <, <=, >, * A scalar subquery or arow subquery returns
>=. or when the subquery is used as an expression. more than one row.

» A select into parameter_list query in Embedded
SQL returns more than one row.

Data exceptions

Data exceptions occur when an entry:

212

Istoo long for its datatype,
Contains an illegal escape sequence, or

Contains other format errors.

CHAPTER 9 SQLSTATE Codes and Messages

Table 9-3: Data exceptions

Message

Value

Description

Arithmetic overflow occurred.

22003

Occurs when:

« An exact numeric type would lose precision or
scale as aresult of an arithmetic operation or
sum function.

« An approximate numeric type would lose
precision or scale as aresult of truncation,
rounding, or asum function.

Data exception - string data right truncated.

22001

Occurswhenachar, unichar, univarchar, or varchar
column istoo short for the data being inserted or
updated and non-blank characters must be
truncated.

Divide by zero occurred.

22012

Occurs when a numeric expression is being
evaluated and the value of the divisor is zero.

Illegal escape character found. There are fewer
bytes than necessary to form avalid character.

22019

Occurs when you are searching for strings that
match a given pattern if the escape sequence does
not consist of asingle character.

Invalid pattern string. The character following the
escape character must be percent sign, underscore,
left square bracket, right square bracket, or the
escape character.

22025

Occurs when you are searching for strings that
match a particular pattern when:

¢ The escape character is not immediately
followed by a percent sign, an underscore, or
the escape character itself, or

¢ The escape character partitions the pattern into
substrings whose lengths are other than 1 or 2
characters.

Integrity constraint violations

Integrity constraint violations occur when an insert, update, or delete
statement violates aprimary key, foreign key, check, or unique constraint or

aunique index.

Table 9-4: Integrity constraint violations

Message Value Description

Attempt to insert duplicate key row in object 23000 Occurswhen aduplicaterow isinsertedinto atable
object_name with unique index index_name that has a unique constraint or index.

Check constraint violation occurred, dbname = 23000 Occurs when an update or delete would violate a

database name, table name = table_name,
constraint name = constraint_name

check constraint on a column.

213

Exceptions

Message Value

Description

Dependent foreign key constraint violation in a 23000
referential integrity constraint.

dbname = database name,

table name = table_name, constraint name =

constraint_name

Occurs when an update or delete on aprimary key
table would violate aforeign key constraint.

Foreign key constraint violation occurred, doname 23000
= database_name, table name = table_name,
constraint name = constraint_name

Occurs when an insert or update on aforeign key
tableis performed without amatching valuein the
primary key table.

Invalid cursor states

Invalid cursor states occur when:

* A fetch usesacursor that is not currently open, or

* Anupdate where current of or delete where current of affects a cursor
row that has been modified or deleted, or

* Anupdate where current of or delete where current of affects a cursor
row that not been fetched.

Table 9-5: Invalid cursor states

Message Value

Description

Attempt to use cursor cursor_name which is not 24000
open. Use the system stored procedure

sp_cursorinfo for more information.

Occurs when an attempt is made to fetch from a
cursor that has never been opened or that was
closed by acommit statement or an implicit or
explicit rollback. Reopen the cursor and repeat the
fetch.

Cursor cursor_namewasclosedimplicitly because 24000
the current cursor position was deleted due to an

update or adelete. The cursor scan position could

not be recovered. This happensfor cursors which
reference more than one table.

Occurswhen thejoin column of amultitable cursor
has been deleted or changed. Issue another fetch to
reposition the cursor.

The cursor cursor_name had its current scan 24000
position deleted because of a DELETE/UPDATE

WHERE CURRENT OF or aregular searched
DELETE/UPDATE. You must do anew FETCH

before doing an UPDATE or DELETE WHERE

CURRENT OF.

214

Occurs when a user issues an update/delete where
current of whose current cursor position has been
deleted or changed. Issue another fetch before
retrying the update/delete where current of.

CHAPTER 9 SQLSTATE Codes and Messages

Message

Value

Description

The UPDATE/DELETE WHERE CURRENT OF
failed for the cursor cursor_name becauseit is not
positioned on arow.

24000

Occurs when a user issues an update/delete where
current of on a cursor that:

» Hasnot yet fetched arow

» Hasfetched one or morerowsafter reaching the
end of theresult set

Syntax errors and access rule violations

Syntax errors are generated by SQL statements that contain unterminated
comments, implicit datatype conversions not supported by Adaptive
Server or other incorrect syntax.

Access rule violations are generated when a user tries to access an object
that does not exist or one for which he or she does not have the correct

permissions.

Table 9-6: Syntax errors and access rule violations

Message Value Description

command permission denied on object 42000 Occurs when a user tries to access an object for

object_name, database database_name, owner which he or she does not have the proper

owner_name. permissions.

Implicit conversion from datatype ‘ datatype’ to 42000 Occurs when the user attempts to convert one

‘datatype’ is not allowed. Use the CONVERT datatype to another but Adaptive Server cannot do

function to run this query. the conversion implicitly.

Incorrect syntax near object_name. 42000 Occurs when incorrect SQL syntax is found near
the object specified.

Insert error: column name or number of supplied 42000 Occurs during inserts when an invalid column

values does not match table definition. nameis used or when an incorrect number of
valuesisinserted.

Missing end comment mark ‘*/’. 42000 Occurs when a comment that begins with the /*
opening delimiter does not also havethe*/ closing
delimiter.

object_namenot found. Specify owner.objectname 42000 Occurswhen auser triesto reference an object that

or use sp_help to check whether the object exists
(sp_help may produce lots of output).

he or she does not own. When referencing an
object owned by another user, besureto qualify the
object name with the name of its owner.

215

Exceptions

Message Value Description

The size (size) given to the object_name exceeds 42000 Occurs when:

the maximum. The |argest size allowed is size. + Thetota sizeof al the columnsin atable
definition exceeds the maximum allowed row
size.

» Thesize of asingle column or parameter
exceeds the maximum allowed for its datatype.

Transaction rollbacks

Transaction rollbacks occur when the transaction isolation level is set to 3,
but Adaptive Server cannot guarantee that concurrent transactions can be
serialized. Thistype of exception generaly results from system problems
such as disk crashes and offline disks.

Table 9-7: Transaction rollbacks

Message Value Description

Your server command (process id #process id) 40001 Occurswhen Adaptive Server detectsthat it cannot
was deadl ocked with another process and has been guarantee that two or more concurrent transactions
chosen as deadlock victim. Re-run your command. can be serialized.

with check option violation

This class of exception occurs when data being inserted or updated
through a view would not be visible through the view.

Table 9-8: with check option violation

Message Value Description

The attempted insert or update failed becausethe 44000 Occurs when aview, or any view on which it
target view was either created WITH CHECK depends, was created with awith check option
OPTION or spans another view created WITH clause.

CHECK OPTION. At |east one resultant row from
the command would not qualify under the CHECK
OPTION constraint.

216

Index

Symbols
& (ampersand)
“and” bitwise operator 182
* (asterisk)
for overlength numbers 156
multiplication operator 181
\ (backdlash)
character string continuation with 190
:= (BNF notation)
in SQL statements xv
" (caret)
“exclusive or” bitwise operator 182
wildcard character 197, 199
: (colon)
preceding milliseconds 60, 98
, (comma)
in default print format for money values 17
not allowed in money values 18
in SQL statements xv
{} (curly braces)
in SQL statements xv
$ (dollar sign)
inidentifiers 190
in money datatypes 18
.. (dots) in database object names 193
= (equals sign)
comparison operator 184
> (greater than)
comparison operator 184
>= (greater than or equal to) comparison operator
184
< (lessthan)
comparison operator 184
<= (less than or equal to) comparison operator 184
- (minus sign)
arithmetic operator 181
for negative monetary values 18
ininteger data 11
1= (not equal to) comparison operator 184

<> (not equal to) comparison operator 184
1> (not greater than) comparison operator 184
1< (not less than) comparison operator 184
() (parentheses)
inexpressons 188
in SQL statements xv
% (percent sign)
arithmetic operator (modulo) 181
wildcard character 197
. (period)
preceding milliseconds 60, 98
separator for qualifier names 192
| (pipe)
“or” bitwise operator 182
+ (plus)
arithmetic operator 181
ininteger data 11
null valuesand 183
string concatenation operator 183
£ (pound sterling sign)
inidentifiers 190
in money datatypes 18
“ " (quotation marks)
comparison operatorsand 184
enclosing constant values 63
enclosing datetimevalues 19
enclosing empty strings 187, 189
inexpressions 189
literal specification of 189
/ (dlash)
arithmetic operator (division) 181
[1 (square brackets)
character set wildcard 197, 198
in SQL statements xv
[(square brackets and caret) character set wildcard
197
~ (tilde)
“not” bitwise operator 182
_ (underscore)
character stringwildcard 197, 198

217

Index

object identifier prefix 177,190

in temporary table names 190
¥ (ven sign)

inidentifiers 190

in money datatypes 18

Numerics
“Ox” 28, 29,57
21st century numbers 19

A

abbreviations
chars for characters, patindex 127, 129
date parts 59, 98
abort option, Ict_admin function 115
abs mathematical function 67
accent sensitivity, wildcard charactersand 197
acos mathematical function 67
adding
interval toadate 94
timestamp column 169
user-defined datatypes 39
addition operator (+) 181
aggregate functions 45-51
See also row aggregates; individual function names
cursorsand 49
difference from row aggregates 49
group by clauseand 46, 48
having clauseand 45
scalar aggregates 46
vector aggregates 46
all keyword
subqueriesincluding 185
alter table command
adding timestamp column 169
ampersand (&)
“and” bitwise operator 182

and (&)
bitwise operator 182
and keyword
inexpressions 187
range-end 185

218

angles, mathematical functionsfor 68
any keyword
inexpressions 185
approximate numeric datatypes 14
arithabort option, set
arith_overflow and 9, 56
mathematical functions and arith_overflow 61
mathematical functions and numeric_truncation
57, 61
arithignore option, set
arith_overflow and 56
mathematical functions and arith_overflow 62
arithmetic
errors 61
expressions 180
operations, approximate numeric datatypesand 14
operations, exact numeric datatypesand 11
operations, money datatypesand 17
operators, in expressions 181
ASCII characters 69
ascii string function 69
asin mathematical function 69
asterisk (*)
multiplication operator 181
overlength numbers 156
atan mathematical function 70
@@textcolid global variable 37
@@textdbid global variable 37
@@textobjid global variable 37
@@textptr global variable 37
@@textsize global variable 37
@@textts global variable 37
atn2 mathematical function 70
automatic operations
update of column, timestamp 18
avg aggregate function 71

B

backslash (\)

for character string continuation 190
Backus Naur Form (BNF) notation ~ xiv, xv
base 10 logarithm function 119
basedate 20
between keyword 185

binary
datatypes 27-30
datatypes, “Ox” prefix 28
datatypes, trailing zerosin 28
expressions 179
expressions, concatenating 183

representation of data for bitwise operations

sort 81, 153
binary datatype 27-30
bit datatype 30
bitwise operators 181182
blanks
See also spaces, character
character datatypesand 24-27
comparisons 184
empty string evaluated as 189
likeand 198
removing leading, with Itrim function
removing trailing, with rtrim function
BNF notation in SQL statements xiv, xv
boolean (logical) expressions 179
brackets. See square brackets|]
browse mode
timestamp datatypeand 18, 168
built-in functions 41-178
See also individual function names
aggregate 45
conversion 51
date 59
image 65
mathematical 60
security 62
string 62
system 64
text 65
type conversion 82-86
by row aggregate subgroup 49

C

caculating dates 95
caldayofweek date part 98
calweekofyear date part 98
calyearofweek date part 98
case sensitivity

and identifiers 191

comparison expressionsand 184, 197

inSQL xvi
cdw. See caldayofweek date part
ceiling mathematical function 73
chains of pages

text orimagedata 33
char datatype 24

inexpressions 189
char gtring function 74
char_length string function 77
character data, avoiding “NULL” in 187
character datatypes 24-27
character expressions

blanksor spacesin 24-27

defined 179

syntax 180
character sets

conversion errors 195

iso_1 195

multibyte 195

object identifiersand 195
character strings

continuation with backdash (\) 190

empty 189

specifying quotes within -~ 189

wildcardsin 195
characters

See also spaces, character

“Ox” 28,2957

deleting, using stuff function 158

number of 77

wildcard 195-201
charindex gtring function 76
client, host computer nameand 109
codes, soundex 154
col_length system function 78
col_name system function 79
colon (), preceding milliseconds 98
column identifiers. See identifiers
column name

asqualifier 192

in parentheses 49

returning 79
columns

identifying 192

Index

219

Index

length definition 78
lengthof 79
numeric, and row aggregates 49
sizesof (list) 24
comma (,)
default print format for money values 17
not allowed in money values 18
in SQL statements xv
comparing values
difference string function 103
inexpressions 184
timestamp 168
comparison operators
See also relational expressions
inexpressions 183
symbolsfor 184
compute clause
row aggregatesand 48
computing dates 95
concatenation
null values 183
using + operator 183
constants
and string functions 63
comparing in expressions 188
expression for 179
continuation lines, character string 190
conventions
See also syntax
identifier name 192
Transact-SQL syntax ~ xiv
used in the Reference Manual ~ xiv
conversion
automatic values 8
between character sets 195
character valueto ASCII code 69
datatype 52
dates used with like keyword 22
degreestoradians 133
explicit 52
implicit 8,52, 188
integer value to character value 75, 167
lower to higher datatypes 188
lowercaseto uppercase 169, 170, 171
null values and automatic 8
radiansto degrees 102

220

string concatenation 183

stylesfor dates 84

uppercaseto lowercase 120
convert function 82-86

concatenationand 183

date styles 84
cos mathematical function 86
cot mathematical function 87
count aggregate function 88
count(*) aggregate function 89
CP 850 Alternative

lower casefirst 82, 153

no accent 82, 153

no case preference 82, 153
CP 850 Scandinavian

dictionary 82,153

no case preference 82, 153
create table command

null valuesand 83, 187
curly braces ({}) in SQL statements xv
currency symbols 18, 190
current date 107
current user

rolesof 147

suser_id system function 162

suser_name system function 163

user system function 174

user_id system function 175

user_name system function 176
CUrsors

aggregate functionsand 49
curunreservedpgs system function 89
cwk. See calweekofyear date part
cyr. See calyearofweek date part
cyrillic characters 195

D

data_pgs system function 90

database object owners
identifiersand 193

database objects
See also individual object names
ID number (object_id) 125
identifier names 190

user-defined datatypesas 39
database owners

name as qualifier 192, 193

objects and identifiers 193
databases

See also database objects

getting nameof 101

ID number, db_id function 101
datalength system function 92

compared to col_length 79
datatype conversions

binary and numeric data 58

bitinformation 58

character information 53

convert function 85

dateand timeinformation 55

domainerrors 57,85

functionsfor 51-58

hexadecimal-likeinformation 57

hextoint function 108

image 58, 86

implicit 52

inttohex function 112

money information 54

numeric information 54, 55

overflow errors 55

rounding during 54

scaleerrors 56
datatype precedence. See precedence
datatypes 140

See also user-defined datatypes; individual

datatype names
approximate numeric 14
binary 27-30
bit 30
dateandtime 19-23
datetime values comparison 184
decimal 12-14
dropping user-defined 39
exact numeric 11-14
hierarchy 6
integer 11-12
listof 2
mixed, arithmetic operationson 181
synonymsfor 2
trailing zerosin binary 28

varbinary 151
date
getting current 107
date formats 20
date functions 59-60
See also individual function names
date parts
abbreviation names and values 59, 98
entering 19
order of 21
dateadd function 94
datediff function = 95-96
datefirst option, set 96, 100
dateformat option, set 21
datename function 97
datepart function 97
dates
comparing 184
datatypes 19-23
default display settings 22
earliest allowed 19, 59, 94
entry formats 21
pre-1753 datatypesfor 59, 94
datetime datatype 19-23
comparison of 184
conversion 23
datefunctionsand 98
values and comparisons 23
day datepart 59, 98
dayofyear date part abbreviation and values
days
date stylefor 84
db_id system function 101
db_name system function 101
DB-Library programs
overflow errors 73, 161
dd. See day date part
decimal datatype 12-14
decimal numbers
round functionand 142
str function, representation of 156
decimal points
datatypes, dlowingin 12
ininteger data 11
default settings
date display format 22

Index

59, 98

221

Index

weekday order 100
default Unicode multilingual 82, 153
default values

datatype length 83

datatype precision 83

datatype scale 83
degrees mathematical function 102
degrees, conversiontoradians 133
delete command

textrow 35
devices
See also sysdevices table

difference string function 103
division operator (/) 181
dollar sign ($)

inidentifiers 190

in money datatypes 18
domain rules

mathematical functionserrorsin 61
dots (..) for omitted name elements 193
double precision datatype 16
double-byte characters. See Multibyte character sets
double-precision floating-point values 16
doubling quotes

inexpressions 189

in character strings 25
dropping

character with stuff function 158

leading or trailing blanks 121
duplicate rows

textorimage 37
duplication of text. See replicate string function
dw. See weekday date part
dy. See dayofyear date part

E

e or E exponent notation
approximate numeric datatypes 16
float datatype 5
money datatypes 17
embedded spaces. See spaces, character
empty string (“ ") or (" ")
not evaluated asnull 187
asasinglespace 27,189

222

enclosing quotesin expressions 189
equal to. See comparison operators
error handling
domainorrange 61
errors
arithmetic overflow 55
convert function 53-57, 85
divide-by-zero 55
domain 57,85
scale 56
trapping mathematical 61
escape characters 200
escape keyword 200-201
European charactersin object identifiers
exact numeric datatypes 11-14
arithmetic operationsand 11
exists keyword
inexpressions 185
exp mathematical function 105
explicit null value 187
exponent, datatype (e or E)
approximate numeric types 16
float datatype 5
money types 17
exponentia value 105
expressions
definition of 179
enclosing quotesin 189
including null values 185
name and table name qualifying 193
typesof 179

F

finding
activeroles 147
current date 107
database ID 100
database name 101
serveruser ID 162
server user name 162
starting position of an expression 76
user diases 177
user IDs 174
user names 174, 175

195

vaididentifiers 176
first-of-the-months, number of 95
fixed-length columns

binary datatypesfor 28

character datatypesfor 24

null valuesin 8
float datatype 16
floating-point data 179

str character representation of 156
floor mathematical function 106
formats

See also dates

date 20
formats, date. See dates

free pages, curunreservedpgs System function
front-end applications, browse modeand 168

functions 41
aggregate 45
conversion 51
date 59
image 65
mathematical 60
security 62
sortkey 151
string 62
system 64
text 65

functions, built-in, type conversion 82-86

G

GB Pinyin 82,153
getdate date function 107
greater than. See comparison operators
Greek characters 195
group by clause

aggregate functionsand 46, 48
guestusers 175

H

having clause
aggregate functionsand 45
hexadecimal numbers

converting 57
hextoint function 108
hh. See hour date part
hierarchy

See also precedence

operators 180
historic dates, pre-1753 59, 94
host computer name 109
host process ID, client process 109
host_id system function 109
host_name system function 109
hour date part 59, 98
hour values date style 84

identifiers 190-195
case sensitivity and 191
renaming 194
system functionsand 177
identities
sa_role and Database Owner 175
server user (suser_id) 163
user (user_id) 175

IDs, server role
role_id 141
IDs, user

database (db_id) 101

server user 163

user_id functionfor 162
image datatype 32-38

initializing 33

null valuesin 34

prohibited actionson 36
image functions 65
implicit conversion of datatypes 8, 188
in keyword

inexpressions 185
index pages

alocation of 136

system functions 91, 136

total of tableand 136
index_col system function 110
index_colorder function 111
indexes

Index

223

Index

See also clustered indexes; database objects;
nonclustered indexes
sysindexestable 34
initializing
text or image columns 35
inserting
automatic leading zero 29
spacesintext strings 155
int datatype 11
aggregate functionsand 73, 161
integer data
inSQL 179
integer datatypes, convertingto 57
integer remainder. See Modulo operator (%)
internal datatypes of null columns 8
See also datatypes
internal structures, pagesused for 91, 136
inttohex function 112
is not null keyword in expressions 185
is null keyword
inexpressions 185
is_sec_service_on security function 113
isnull system function 113
SO 8859-5 Cyrillic dictionary 82, 153
SO 8859-5 Russian dictionary 82, 153
ISO 8859-9 Turkish dictionary 82, 153
iso_1character set 195
isql utility command
See also Utility Programs manual
approximate numeric datatypesand 15

J
Japanese character sets
object identifiersand 195
joins
count or count(*) with 89
null valuesand 186
K

keywords 203-209
Transact-SQL 190, 203-205

224

L

languages, aternate

effect on date parts 100

weekday order and 100
last-chance threshold

Ict_admin function 116
last-chance thresholds 116
latin-1 English, French, German

dictionary 82,153

no accent 82, 153

nocase 82,153

no case preference 82, 153
latin-1 Spanish

dictionary 82,153

no accent 82, 153

nocase 82,153
Ict_admin system function 116
leading blanks, remova with Itrim function
leading zeros, automatic insertion of 29
length

Scealso size

of expressionsin bytes 93

of columns 79
less than. See comparison operators
license_enabled system function 117
like keyword

searching for dateswith 22

wildcard characters used with 197
linkage, page. See pages, data
listing

datatypes with types 6-7
lists

datatypes 2

functions 4145
literal character specification

like match string 199

quotes (* ") 189
literal values

datatypesof 5

null 187
lockscheme system function 118
log mathematical function 118, 119
log10 mathematical function 119
logarithm, base 10 119
logical expressions 179

syntax 180

121

truth tablesfor 188
log10 mathematical function 119
lower and higher datatypes. See precedence
lower string function 120
|lowercase |etters, sort order and
See al so case sensitivity
Itrim string function 120

M

macintosh character set 195
matching

See also Pattern matching

name and tablename 193
mathematical functions 60-62
max aggregate function 122
messages

mathematical functionsand 62
mi. See minute date part
midnights, number of 95
millisecond datepart 59, 98
millisecond values, datediff resultsin 95
min aggregate function 123
minus sign (-)

ininteger data 11

subtraction operator 181
minute date part 59, 98
mixed datatypes, arithmetic operationson 181
mm. See month date part
model database

user-defined datatypesin 38
modul o operator (%) 181

money
default comma placement 17
symbols 190

money datatype 17, 19
arithmetic operationsand 17
month date part 59, 98
month values
date part abbreviationand 59, 98
date style 84
ms. See millisecond date part
multibyte character sets
converting 53
identifier names 195

Index

nchar datatypefor 24

wildcard charactersand 199
multilingual, Unicode 82, 153
multiplication operator (*) 181
mut_excl_roles system function 124
mutual exclusivity of roles

mut_excl_roles and 124

N

“N/A”,using “NULL" or 187
names
See also identifiers
checking with valid_name 194
date parts 59, 98
db_name function 101
finding Similar-sounding 154
host computer 109
index_col andindex 110
object_name function 126
omitted elementsof (..) 193
qualifying database objects 192, 195
suser_name function 163
user system function 174
user_name function 176
weekday numbersand 100
naming
conventions 190-195
database objects 190-195
identifiers 190195
user-defined datatypes 39
national character. See nchar datatype
natura logarithm 118, 119
nchar datatype 24
negative sign (-) in money values 18
nesting
aggregate functions 46
string functions 63
“none”, using “NULL"” or 187
not keyword
inexpressions 185
not like keyword 196
not null keyword
create table 83
not null values

225

Index

spacesin 27
null keyword
create table 83
inexpressions 185
null string in character columns 158, 187
null values
column datatype conversion for 26
default parametersas 186
inexpressions 186
text and image columns 34
number (quantity of)
first-of-the-months 95
midnights 95
rowsincount(*) 89
rows reported by rowent 143
Sundays 95
number of characters
date interpretationand 22
number of pages
alocated to table or index 136
reserved_pgs function 136
used by table and clustered index (total) 173
used by tableor index 91
used_pgs function 173
numbers
asterisks (**) for overlength 156
converting stringsof 27
database ID 101
objectID 125
odd or evenbinary 29
random float 134
weekday namesand 100
numeric data
row aggregatesand 49
numeric datatype 12
range and storagesize 3
numeric expressions 179
round functionfor 142
nvarchar datatype 24-25
spacesin 24

O

object Allocation Map (OAM) pages 173
object names, database

226

See also identifiers
user-defined datatype namesas 39
object_id system function 125
object_name system function 126
objects. See database objects; databases
operators
arithmetic 181
bitwise 181-182
comparison 183
precedence 180
or keyword
inexpressions 187
order
See also indexes; precedence; sort order
of execution of operatorsin expressions 181
of dateparts 21
reversing character expression 137
weekday numeric 100
order by clause 151
other users, qualifying objectsowned by 195
overflow errors
DB-Library 73,161
ownership
of objectsbeing referenced 195

P

padding, data
blanksand 24
underscoresin temporary table names 190
with zeros 28

pages, data
dlocationof 136
chainof 33

data_pgs system function 91
reserved_pgs system function 136
used for internal structures 91, 136
used in atableor index 91, 173
used_pgs system function 173
pages, index
number used in nonclustered 173
pages, OAM (Object Allocation Map)
number of 173
pagesize system function 129
parentheses ()

See also Symbols section of thisindex
inanexpression 188
in SQL statements xv
partitioned tables
sizeof 132
patindex string function 126
text/image function 37
pattern matching 195
See also String functions; wildcard characters
charindex gtring function 76
difference string function 103
patindex string function 128
percent sign (%)
modulo operator 181
wildcard character 197
period (.)
preceding milliseconds 98
separator for qualifier names 192
pi mathematical function 130
platform-independent conversion
hexadecimal stringsto integer values 108
integer valuesto hexadecimal strings 112
plus (+)
arithmetic operator 181
ininteger data 11
null valuesand 183
string concatenation operator 183
pointers
null for uninitialized text or image column 165
text and imagepage 165
text or image column 33, 38
pound sterling sign (£)
inidentifiers 190
in money datatypes 18
power mathematical function 131
precedence
of lower and higher datatypes 189
of operatorsin expressions 180
preceding blanks. See blanks; spaces, character
precision, datatype
approximate numeric types 15
exact numerictypes 12
money types 17
proc_role system function 131
ptn_data_pgs system function 132
punctuation

Index

characters allowed in identifiers 190

Q

qq. See quarter date part

qualifier names 192, 195

quarter date part 59, 98

quotation marks (“ ")
comparison operatorsand 184
for empty strings 187, 189
enclosing constant values 63
enclosing datetimevalues 19
inexpressions 189
literal specification of 189

R

radians mathematical function 133
radians, conversion to degrees 102
rand mathematical function 134
range

See also numbers; size

of date part values 59, 98

datediff results 95

errorsin mathematical functions 61

money valuesalowed 17

of recognized dates 19

wildcard character specification of 198, 199
range queries

and end keyword 185

between start keyword 185
readtext command

text datainitialization requirement 35
real datatype 16
reference information

datatypes 1

reserved words 203

Transact-SQL functions 41
relational expressions 180

See also comparison operators
replicate string function 136
reserve option, Ict_admin function 114
reserved words 203-209

See also keywords

227

Index

database object identifiersand 190

SQL92 205

Transact-SQL 203-205
reserved_pgs system function 136
results

of row aggregate operations 49
retrieving

similar-sounding words or names 154
reverse string function 137
right string function 139
right-justification of str function 157
role hierarchies

role_contain and 139
role_contain system function 139
role_id system function 140
role_name system function 141
roles

checking with proc_role 132

showing system with show_role 147
roles, user-defined

mutua exclusivity and 124
round mathematical function 142
rounding 142

approximate numeric datatypes 15

datetimevalues 55

money values 17,54

str string functionand 156
row aggregates 49

compute and 48

difference from aggregate functions 49
rowcnt system function 143

rows, table
detail and summary results 49
number of 143

row aggregatesand 49
rtrim string function 144
rules

See also database objects

S

scalar aggregates

nesting vector aggregates within -~ 46
scale, datatype 13

decimal 7

228

IDENTITY columns 12

loss during datatype conversion 10

numeric 7
search conditions

datetimedata 22
second datepart 59, 98
seconds, datediff resultsin 95
security

functions 62
security functions 62
seed values

rand function 135
select command 151

aggregatesand 45

for browse 168

restrictionsin standard SQL 47

in Transact-SQL compared to standard SQL
select into command

not allowed with compute 51
server user name and ID

suser_id function 162

suser_name functionfor 163
shift-J'Sbinary order 82, 153
show_role system function 147
show_sec_services security function 148
sign mathematical function 149

a7

similar-sounding words. See soundex string function

sin mathematical function 149
single quotes. See quotation marks
single-byte character sets

char datatypefor 24
size

See also length; number (quantity of); range; size

limit; space allocation
column 79
floor mathematical function 106
identifiers (length) 190
image datatype 32
of pi 130
text datatype 32
sizelimit
approximate numeric datatypes 16
binary datatype 28
char columns 24
datatypes 24
datetime datatype 20

double precision datatype 16
exact numeric datatypes 11
fixed-length columns 24
float datatype 16
image datatype 28
integer value smallest or largest 106
money datatypes 17
nchar columns 24
nvarchar columns 25
real datatype 16
smalldatetime datatype 20
varbinary datatype 28
varchar columns 24
slash (/)
division operator 181
smalldatetime datatype 19
date functionsand 98
smallint datatype 11
smallmoney datatype 17, 19
sort order
character collation behavior 150, 151
comparison operatorsand 184
sortkey function 151
soundex string function 154
sp_bindefault system procedure
user-defined datatypesand 39
sp_bindrule system procedure
user-defined datatypesand 39
sp_help system procedure 39
space string function 155
spaces, character
See also blanks
in character datatypes 24-27
empty strings (“ ") or (" ')as 187,189
inserted in text strings 155
like datetime valuesand 23
not dlowed in identifiers 190
speed (Server)
binary and varbinary datatype access 28
SQL (used with Sybase databases). See Transact-SQL
SQL standards
aggregate functionsand 47
concatenationand 183
SQLSTATE codes 211-216
exceptions 212-216
sqrt mathematical function 155

Index

sguare brackets|]
caret wildcard character ["] and 197, 199
in SQL statements xv
wildcard specifier 197
sguare root mathematical function 155
ss. See second date part
storage management
text and imagedata 34
str string function 156
string functions 6264
See also text datatype
strings, concatenating 183
stuff string function 158
style values, date representation 84
subqueries
any keywordand 185
inexpressions 185
substring string function 160
subtraction operator (-) 181
sum aggregate function 161
sundays, number value 95
suser_id system function 162
suser_name System function 163
syb_sendmsg function 163
symbols
See also wildcard characters; Symbols section of this
index
arithmetic operator 181
comparison operator 184
inidentifier names 190
matching character strings 197
money 190
in SQL statements xiv, xv
wildcards 197
synonyms
chars and characters, patindex
synonyms for datatypes 2
syntax conventions, Transact-SQL xiv
syscolumnstable 30
sysindexes table
name columnin 34
syssrvrolestable
role_id system functionand 140
system datatypes. See datatypes
system functions 6465
system roles

127, 129

229

Index

show_role and 147
system tables
sysname datatype 31

T

table pages
See also pages, data
system functions 91
tables
identifying 192
names as qualifiers 192
worktables 45
tan mathematical function 164
tangents, mathematical functionsfor 164
tempdb database
user-defined datatypesin 38
temporary tables
naming 190
text datatype 32-38
convert command 37
converting 54
initializing with null values 33
null values 34
prohibited actionson 36
text functions 65
text page pointer 79
text pointer values 165
@@textcolid global variable 37
@@textdbid global variable 37
@@textobjid global variable 37
textptr function 165
@@textptr global variable 37
@@textsize global variable 37
@@textts global variable 37
textvalid function 166
Thai dictionary 82, 153
thresholds
last-chance 116
time values
datatypes 19-23
timestamp datatype 18-19
automatic update of 18
browse modeand 18, 168
comparison using tsequal function 168

230

tinyint datatype 11
trailing blanks. See blanks
Transact-SQL

aggregate functionsin 47

reserved words 203-205
trandlation

of integer arguments into binary numbers 182
triggers

See also database objects; stored procedures
trigonometric functions 60, 60-164
true/false data, bit columnsfor 30
truncation

arithabort numeric_truncation 9

binary datatypes 28

character string 24

datediff results 95

str conversionand 157

temporary table names 190
truth tables for logical expressions 188
tsequal system function 168
twenty-first century numbers 19

U

UDP messaging 163
underscore (1)
character stringwildcard 197, 198
object identifier prefix 177,190
in temporary tablenames 190
unicode multilingual, default 82, 153
unigue names asidentifiers 191
updating
Seealso changing 18
inbrowsemode 168
prevention during browse mode 168
upper string function 171
uppercase letter preference
See also case sensitivity; order by clause
us_english language
weekdays setting 100
used_pgs system function 173
User Datagram Protocol messaging 163
user IDs
user_id functionfor 175
valid_user function 177

user keyword
system function 174
user names 176
finding 163
user objects. See database objects
user system function 174
user_id system function 175
user_name system function 176
user-created objects. See database objects
user-defined datatypes
See also datatypes
creating 38
dropping 39
sysnameas 31
user-defined roles
mutua exclusivity and 124
using bytes option, patindex string function
128, 129

V

valid_name system function 177

using after changing character sets 194
valid_user system function 177
varbinary datatype 27-29, 151
varchar datatype 24-25

datetime values conversionto 23

inexpressions 189

spacesin 24
variable-length character. See varchar datatype
vector aggregates 46

nesting inside scalar aggregates 46
view namein qualified object name 192

w

week date part
weekday date part
weekday date vaue
names and numbers 100
where clause
null valuesina 186
wildcard characters 195-201
See also patindex string function

59, 98
59, 98

127,

Index

inalike match string 197
literal charactersand 199
used as literal characters 199
wk. See week date part
words, finding similar-sounding 154
worktables, number of 45
writetext command
text datainitialization requirement 35

Y

year date part 59, 98
year values, date style 84
yensign (¥)

inidentifiers 190

in money datatypes 18
yes/no data, bit columnsfor 30
yy. Seeyear date part

Z

zerox (Ox) 28,29, 57
zeros, trailing, in binary datatypes 28-29

231

Index

232

	Reference Manual Volume 1: Building Blocks
	Adaptive Server Enterprise
	About This Book
	Audience
	How to use this book
	Related documents
	Other sources of information
	Conventions
	Table 1: Font and syntax conventions for this manual
	If you need help

	CHAPTER 1 System and User-Defined Datatypes
	Datatype categories
	Table 1-1: Datatype categories

	Range and storage size
	Table 1-2: Range and storage size for system datatypes

	Declaring the datatype of a column, variable, or parameter
	Declaring the datatype for a column in a table
	Declaring the datatype for a local variable in a batch or procedure
	Declaring the datatype for a parameter in a stored procedure
	Determining the datatype of a literal

	Datatype of mixed-mode expressions
	Determining the datatype hierarchy
	Determining precision and scale
	Table 1-3: Precision and scale after arithmetic operations

	Converting one datatype to another
	Automatic conversion of fixed-length NULL columns
	Table 1-4: Automatic conversion of fixed-length datatypes

	Handling overflow and truncation errors

	Standards and compliance
	Exact numeric datatypes
	Function
	Integer Types
	Table 1-5: Integer datatypes
	Entering integer data
	Table 1-6: Valid integer values
	Table 1-7: Invalid integer values

	Decimal datatypes
	Specifying precision and scale
	Storage size
	Entering decimal data
	Table 1-8: Valid decimal values
	Table 1-9: Invalid decimal values

	Standards and compliance

	Approximate numeric datatypes
	Function
	Understanding approximate numeric datatypes
	Range, precision, and storage size
	Table 1-10: Approximate numeric datatypes

	Entering approximate numeric data
	Values that may be entered by Open Client clients
	Standards and compliance

	Money datatypes
	Function
	Accuracy
	Range and storage size
	Table 1-11: Money datatypes

	Entering monetary values
	Standards and compliance

	Timestamp datatype
	Function
	Creating a timestamp column

	Date and time datatypes
	Function
	Range and storage requirements
	Table 1-12: Transact-SQL datatypes for storing dates and times

	Entering datetime and smalldatetime data
	Entering the date portion of a datetime or smalldatetime value
	Table 1-13: Date formats for datetime and smalldatetime datatypes

	Entering the time portion of a datetime or smalldatetime value
	Display formats for datetime and smalldatetime values
	Table 1-14: Examples of datetime entries

	Finding datetime values that match a pattern
	Manipulating dates

	Standards and compliance

	Character datatypes
	Function
	Length and storage size
	Table 1-15: Character datatypes
	Determining column length with system functions

	Entering character data
	Treatment of blanks
	Manipulating character data
	Standards and compliance

	Binary datatypes
	Function
	Valid binary and varbinary entries
	Entries of more than the max column size
	Treatment of trailing zeroes
	Platform dependence
	Standards and compliance

	bit datatype
	Function
	Entering data into bit columns
	Storage size
	Restrictions
	Standards and compliance

	sysname datatype
	Function
	Using the sysname datatype
	Standards and compliance

	text and image datatypes
	Function
	Defining a text or image column
	How Adaptive Server stores text and image data
	Putting additional pages on another device
	Zero padding
	Effect of partitioning on data storage

	Initializing text and image columns
	Saving space by allowing NULL
	Getting information from sysindexes
	Table 1-16: Storage of text and image data

	Using readtext and writetext
	Determining how much space a column uses
	Restrictions on text and image columns
	Selecting text and image data
	Table 1-17: text and image global variables

	Converting text and image datatypes
	Pattern matching in text data
	Duplicate rows
	Standards and compliance

	User-defined datatypes
	Function
	Creating frequently used datatypes in the model database
	Creating a user-defined datatypes
	Renaming a user-defined datatype
	Dropping a user-defined datatype
	Getting help on datatypes
	Standards and compliance

	CHAPTER 2 Transact-SQL Functions
	Types of functions
	Table 2-1: Types of Transact-SQL functions
	Table 2-2: List of Transact-SQL functions

	Aggregate functions
	Aggregates used with group by
	Aggregate functions and NULL values
	Vector and scalar aggregates
	Example 1
	Example 2
	Example 3

	Aggregate functions as row aggregates

	Datatype conversion functions
	Table 2-3: Explicit, implicit, and unsupported datatype conversions
	Converting character data to a non-character type
	Converting from one character type to another
	Converting numbers to a character type
	Rounding during conversion to and from money types
	Converting date/time information
	Converting between numeric types
	Arithmetic overflow and divide-by-zero errors
	Scale errors
	Domain errors

	Conversions between binary and integer types
	Converting between binary and numeric or decimal types
	Converting image columns to binary types
	Converting other types to bit
	Converting NULL value

	Date functions
	Date parts

	Mathematical functions
	Security functions
	String functions
	Limits on string functions

	System functions
	Text and image functions

	CHAPTER 3 Functions: abs – difference
	abs
	acos
	ascii
	asin
	atan
	atn2
	avg
	ceiling
	char
	Reformatting output with char

	charindex
	char_length
	col_length
	col_name
	compare
	Table 3-1: Collation names and IDs

	convert
	Table 3-2: Display formats for date/time information
	Conversions involving Java classes

	cos
	cot
	count
	curunreservedpgs
	data_pgs
	Accuracy of results
	Errors

	datalength
	dateadd
	datediff
	datename
	datepart
	Table 3-3: Date parts and their values

	db_id
	db_name
	degrees
	difference

	CHAPTER 4 Functions: exp – mut_excl_roles
	exp
	floor
	getdate
	hextoint
	host_id
	host_name
	index_col
	index_colorder
	inttohex
	isnull
	is_sec_service_on
	lct_admin
	license_enabled
	lockscheme
	log
	log10
	lower
	ltrim
	max
	min
	mut_excl_roles

	CHAPTER 5 Functions: object_id – rtrim
	object_id
	object_name
	patindex
	pagesize
	pi
	power
	proc_role
	ptn_data_pgs
	radians
	rand
	replicate
	reserved_pgs
	reverse
	right
	role_contain
	role_id
	role_name
	round
	rowcnt
	rtrim

	CHAPTER 6 Functions: show_role – valid_user
	show_role
	show_sec_services
	sign
	sin
	sortkey
	Collation Tables
	Table 6-1: Collation names and IDs

	soundex
	space
	sqrt
	str
	stuff
	substring
	sum
	suser_id
	suser_name
	syb_sendmsg
	tan
	textptr
	textvalid
	to_unichar
	tsequal
	Timestamping a new table for browsing
	Timestamping an existing table

	uhighsurr
	ulowsurr
	upper
	uscalar
	used_pgs
	user
	user_id
	user_name
	valid_name
	valid_user

	CHAPTER 7 Expressions, Identifiers, and Wildcard Characters
	Expressions
	Table 7-1: Types of expressions used in syntax statements
	Arithmetic and character expressions
	Relational and logical expressions
	Operator precedence
	Arithmetic operators
	Table 7-2: Arithmetic operators

	Bitwise operators
	Table 7-3: Truth tables for bitwise operations
	Table 7-4: Examples of bitwise operations

	String concatenation operator
	Comparison operators
	Table 7-5: Comparison operators

	Nonstandard operators
	Using any, all and in
	Negating and testing
	Ranges
	Using nulls in expressions
	Comparisons that return TRUE
	Difference between FALSE and UNKNOWN
	Using “NULL” as a character string
	NULL compared to the empty string

	Connecting expressions
	Table 7-6: Truth tables for logical expressions

	Using parentheses in expressions
	Comparing character expressions
	Using the empty string
	Including quotation marks in character expressions
	Using the continuation character

	Identifiers
	Tables beginning with # (temporary tables)
	Case sensitivity and identifiers
	Uniqueness of object names
	Using delimited identifiers
	Identifying tables or columns by their qualified object name
	Using delimited identifiers within an object name
	Omitting the owner name
	Referencing your own objects in the current database
	Referencing objects owned by the database owner
	Using qualified identifiers consistently

	Determining whether an identifier is valid
	Renaming database objects
	Using multibyte character sets

	Pattern matching with wildcard characters
	Using not like
	Case and accent insensitivity
	Using wildcard characters
	Table 7-7: Wildcard characters used with like
	The percent sign (%) wildcard character
	The underscore (_) wildcard character
	Bracketed ([]) characters
	The caret (^) wildcard character

	Using multibyte wildcard characters
	Using wildcard characters as literal characters
	Using square brackets ([])as escape characters
	Table 7-8: Using square brackets to search for wildcard characters

	Using the escape clause
	Table 7-9: Using the escape clause

	Using wildcard characters with datetime data

	CHAPTER 8 Reserved Words
	Transact-SQL reserved words
	SQL92 reserved words
	Potential SQL92 reserved words

	CHAPTER 9 SQLSTATE Codes and Messages
	Warnings
	Table 9-1: SQLSTATE warnings

	Exceptions
	Cardinality violations
	Table 9-2: Cardinality violations

	Data exceptions
	Table 9-3: Data exceptions

	Integrity constraint violations
	Table 9-4: Integrity constraint violations

	Invalid cursor states
	Table 9-5: Invalid cursor states

	Syntax errors and access rule violations
	Table 9-6: Syntax errors and access rule violations

	Transaction rollbacks
	Table 9-7: Transaction rollbacks

	with check option violation
	Table 9-8: with check option violation

	Index

